Properties

Label 2-374790-1.1-c1-0-11
Degree $2$
Conductor $374790$
Sign $1$
Analytic cond. $2992.71$
Root an. cond. $54.7056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s − 4·7-s + 8-s + 9-s + 10-s − 12-s − 13-s − 4·14-s − 15-s + 16-s − 6·17-s + 18-s + 8·19-s + 20-s + 4·21-s − 6·23-s − 24-s + 25-s − 26-s − 27-s − 4·28-s + 6·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.277·13-s − 1.06·14-s − 0.258·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 1.83·19-s + 0.223·20-s + 0.872·21-s − 1.25·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.755·28-s + 1.11·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 374790 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 374790 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(374790\)    =    \(2 \cdot 3 \cdot 5 \cdot 13 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(2992.71\)
Root analytic conductor: \(54.7056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 374790,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.268090439\)
\(L(\frac12)\) \(\approx\) \(2.268090439\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 + T \)
31 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.35156615385571, −12.16179281815374, −11.67779265839669, −11.37155046499576, −10.52345097660515, −10.26188637933318, −9.951674639192481, −9.462225341108527, −8.903928151097714, −8.524391486064236, −7.610790167922368, −7.309394667399062, −6.728436511246796, −6.425748932882754, −6.028558509248787, −5.548204182879084, −4.995763379058166, −4.610514883794238, −3.925849879313497, −3.427077560841597, −3.025280133521564, −2.328484389295885, −1.929272653790604, −1.008885290598213, −0.3882738271288198, 0.3882738271288198, 1.008885290598213, 1.929272653790604, 2.328484389295885, 3.025280133521564, 3.427077560841597, 3.925849879313497, 4.610514883794238, 4.995763379058166, 5.548204182879084, 6.028558509248787, 6.425748932882754, 6.728436511246796, 7.309394667399062, 7.610790167922368, 8.524391486064236, 8.903928151097714, 9.462225341108527, 9.951674639192481, 10.26188637933318, 10.52345097660515, 11.37155046499576, 11.67779265839669, 12.16179281815374, 12.35156615385571

Graph of the $Z$-function along the critical line