L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.766 − 1.32i)5-s + (0.173 − 0.300i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)13-s + (1.43 + 0.524i)15-s − 1.87·17-s + (0.0603 + 0.342i)21-s + (−0.673 + 1.16i)25-s + (0.500 + 0.866i)27-s + (−0.5 − 0.866i)31-s − 0.532·35-s + 1.53·37-s + (0.939 + 0.342i)39-s + (−0.939 + 1.62i)43-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.766 − 1.32i)5-s + (0.173 − 0.300i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)13-s + (1.43 + 0.524i)15-s − 1.87·17-s + (0.0603 + 0.342i)21-s + (−0.673 + 1.16i)25-s + (0.500 + 0.866i)27-s + (−0.5 − 0.866i)31-s − 0.532·35-s + 1.53·37-s + (0.939 + 0.342i)39-s + (−0.939 + 1.62i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.09025218257\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.09025218257\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.766 - 0.642i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + 1.87T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.53T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 0.347T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.201751461680250141829090181963, −7.76556600650504329296894993653, −6.70072109287127429419603478457, −5.92213932929309779163457293428, −5.03293883619685911360967087803, −4.47549417812639687870051519295, −4.07772831943094740135274776692, −2.80871150141933921927577870020, −1.22952677383235132616985765277, −0.06019349182816634045108503560,
1.92695788602108619953694636416, 2.55678852059728142736891584574, 3.75896972628953209098223509902, 4.58032883635711901996472717360, 5.41664100408565716640796545973, 6.54456496789950237266869956467, 6.78984792652323577775899893505, 7.34027301904693615550156892369, 8.234166575522716072666202937586, 8.936638812272539007623976326103