L(s) = 1 | + (0.366 − 0.366i)5-s + (−0.866 − 0.5i)13-s + (1.5 − 0.866i)17-s + 0.732i·25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.133i)37-s + (−0.5 − 1.86i)41-s + (0.866 + 0.5i)49-s + 1.73·53-s + (−0.5 − 0.866i)61-s + (−0.5 + 0.133i)65-s + (−0.366 − 0.366i)73-s + (0.232 − 0.866i)85-s + (1.36 − 0.366i)89-s + (1.36 + 0.366i)97-s + ⋯ |
L(s) = 1 | + (0.366 − 0.366i)5-s + (−0.866 − 0.5i)13-s + (1.5 − 0.866i)17-s + 0.732i·25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.133i)37-s + (−0.5 − 1.86i)41-s + (0.866 + 0.5i)49-s + 1.73·53-s + (−0.5 − 0.866i)61-s + (−0.5 + 0.133i)65-s + (−0.366 − 0.366i)73-s + (0.232 − 0.866i)85-s + (1.36 − 0.366i)89-s + (1.36 + 0.366i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.679 + 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.679 + 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.345483984\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.345483984\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
good | 5 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (0.5 - 0.133i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (0.5 + 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 - 1.73T + T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 73 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.713783778002706782430233486768, −7.62768534331397166490651881430, −7.39888387746198361222375502261, −6.31012111348739806615507664941, −5.34561533249153893946541770811, −5.14193745750741138359260308577, −3.93907879851800522541227720846, −3.04369909215480189073749192157, −2.12732017817196878923136902101, −0.851595361035763881976507773479,
1.32659830745744917726889701514, 2.40246568227012780599992510538, 3.25241960372024887518492999317, 4.19043893954116615040335475404, 5.09522212394471964634323058201, 5.82270676091732378725884269522, 6.60433633047011165764862177618, 7.27021155576149443204564479508, 8.053912457798255528640839187576, 8.743922743342083472551699794725