L(s) = 1 | + (−1 + i)5-s − i·13-s − 2i·17-s − i·25-s + (1 + i)37-s + (1 − i)41-s − i·49-s + 2·53-s − 2·61-s + (1 + i)65-s + (1 + i)73-s + (2 + 2i)85-s + (1 + i)89-s + (1 − i)97-s + (1 − i)109-s + ⋯ |
L(s) = 1 | + (−1 + i)5-s − i·13-s − 2i·17-s − i·25-s + (1 + i)37-s + (1 − i)41-s − i·49-s + 2·53-s − 2·61-s + (1 + i)65-s + (1 + i)73-s + (2 + 2i)85-s + (1 + i)89-s + (1 − i)97-s + (1 − i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9583517946\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9583517946\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + (1 - i)T - iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 17 | \( 1 + 2iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + (-1 + i)T - iT^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 - 2T + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + 2T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-1 - i)T + iT^{2} \) |
| 97 | \( 1 + (-1 + i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.518609341742377314456769295243, −7.65588509238764072186343001743, −7.33639717729686699128713140326, −6.60298547932210727145245960736, −5.62912378633963076556557223588, −4.82838919246430270098992968157, −3.89430784817368792590338407325, −3.06771659470846232960731048340, −2.50902055084983847112073041410, −0.66156577215943567323766281094,
1.10247418661650765586022074307, 2.17349867152280524075897364071, 3.57539908031064634315522150312, 4.21580925294549505121109840891, 4.70647373636620488158144824503, 5.86087061692939696009033054717, 6.41919343677687892111192996719, 7.60879150908012125039689572300, 7.905175551103517088204351829065, 8.881280032712771804404653911545