L(s) = 1 | + (1 + i)11-s − 13-s + 2i·23-s + i·25-s + (−1 − i)37-s + (1 + i)47-s − i·49-s + (1 + i)59-s + (1 − i)71-s + (1 + i)73-s + (−1 + i)83-s + (1 − i)97-s − 2·107-s + (−1 + i)109-s + ⋯ |
L(s) = 1 | + (1 + i)11-s − 13-s + 2i·23-s + i·25-s + (−1 − i)37-s + (1 + i)47-s − i·49-s + (1 + i)59-s + (1 − i)71-s + (1 + i)73-s + (−1 + i)83-s + (1 − i)97-s − 2·107-s + (−1 + i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.192848549\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.192848549\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (-1 - i)T + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 - 2iT - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (1 + i)T + iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-1 - i)T + iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (-1 - i)T + iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + (-1 + i)T - iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (1 - i)T - iT^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (-1 + i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.057067246200666537592514096457, −7.946214172053046832023024798469, −7.18832892158794456330727502187, −6.91526742812058316580299619704, −5.68449123990573229757842408095, −5.14886062211918036381687984094, −4.15364199325891527044518540868, −3.49622933300726983214470310497, −2.28640986458408499638749451288, −1.41616799565102257221151359798,
0.71509770487713379626285831726, 2.13919396080004741856435479982, 3.00672376694689320482926807469, 3.99837260937074428732086605241, 4.71357490351977842195358177600, 5.59771683929236974383654218971, 6.54564021487880075869404897288, 6.83549714583265655702384124310, 8.010412743061647922127680967610, 8.537063889734051958640116225418