L(s) = 1 | + 1.41·5-s + 1.41i·11-s + i·13-s + 1.00·25-s + 1.41i·41-s − 2·43-s + 1.41·47-s − 49-s + 2.00i·55-s + 1.41i·59-s − 2i·61-s + 1.41i·65-s + 1.41·71-s − 2i·79-s − 1.41i·83-s + ⋯ |
L(s) = 1 | + 1.41·5-s + 1.41i·11-s + i·13-s + 1.00·25-s + 1.41i·41-s − 2·43-s + 1.41·47-s − 49-s + 2.00i·55-s + 1.41i·59-s − 2i·61-s + 1.41i·65-s + 1.41·71-s − 2i·79-s − 1.41i·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.638358815\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.638358815\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 - 1.41T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 + 2T + T^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 1.41iT - T^{2} \) |
| 61 | \( 1 + 2iT - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.010266361054060627329496754757, −8.063269197268561397060553306355, −7.12244094590950342689088854813, −6.56857921515892766418432962793, −5.89825294635399597748387593535, −4.93166838064083239973352330561, −4.45505310880636672047288517141, −3.18682674729443108435621125177, −2.06051342510879132093593889764, −1.65129915570072927569738896434,
0.968231665347310459829792074464, 2.14807701760074852186929795146, 3.00040267985160145562043072486, 3.82717364803241911058310210475, 5.24639563486609219157692575452, 5.51368428833927828307701388441, 6.27375945724187630600013052961, 6.95374104216066410858638230400, 8.089712627533763209205878611376, 8.553973982884147029783967294927