Properties

Label 2-3744-1.1-c1-0-14
Degree $2$
Conductor $3744$
Sign $1$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·11-s + 13-s + 6·17-s − 6·19-s − 5·25-s + 2·29-s + 6·31-s + 10·37-s − 8·41-s − 12·43-s + 12·47-s − 3·49-s + 6·53-s + 2·61-s − 2·67-s − 8·71-s + 14·73-s − 8·77-s − 4·79-s + 8·83-s − 4·89-s − 2·91-s + 14·97-s + 18·101-s − 4·103-s − 4·107-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.20·11-s + 0.277·13-s + 1.45·17-s − 1.37·19-s − 25-s + 0.371·29-s + 1.07·31-s + 1.64·37-s − 1.24·41-s − 1.82·43-s + 1.75·47-s − 3/7·49-s + 0.824·53-s + 0.256·61-s − 0.244·67-s − 0.949·71-s + 1.63·73-s − 0.911·77-s − 0.450·79-s + 0.878·83-s − 0.423·89-s − 0.209·91-s + 1.42·97-s + 1.79·101-s − 0.394·103-s − 0.386·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3744} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.831566452\)
\(L(\frac12)\) \(\approx\) \(1.831566452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.497413374612763569439882828270, −7.87465378386592706303501592643, −6.86332008798678632422624620649, −6.31825476220365362391861069789, −5.73810146668862695788581499467, −4.58143926539247415228791956144, −3.82389795175239287849049485314, −3.13135502824902591540681862264, −1.95615664115665161740945735212, −0.801326733893202046230523408363, 0.801326733893202046230523408363, 1.95615664115665161740945735212, 3.13135502824902591540681862264, 3.82389795175239287849049485314, 4.58143926539247415228791956144, 5.73810146668862695788581499467, 6.31825476220365362391861069789, 6.86332008798678632422624620649, 7.87465378386592706303501592643, 8.497413374612763569439882828270

Graph of the $Z$-function along the critical line