Properties

Label 2-3744-1.1-c1-0-10
Degree $2$
Conductor $3744$
Sign $1$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·11-s + 13-s − 4·19-s + 4·23-s − 25-s + 8·29-s − 8·31-s + 2·37-s − 6·41-s + 4·43-s + 6·47-s − 7·49-s + 4·53-s − 4·55-s + 6·59-s + 2·61-s − 2·65-s − 4·67-s + 6·71-s − 2·73-s + 16·79-s + 2·83-s − 10·89-s + 8·95-s − 2·97-s − 8·101-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.603·11-s + 0.277·13-s − 0.917·19-s + 0.834·23-s − 1/5·25-s + 1.48·29-s − 1.43·31-s + 0.328·37-s − 0.937·41-s + 0.609·43-s + 0.875·47-s − 49-s + 0.549·53-s − 0.539·55-s + 0.781·59-s + 0.256·61-s − 0.248·65-s − 0.488·67-s + 0.712·71-s − 0.234·73-s + 1.80·79-s + 0.219·83-s − 1.05·89-s + 0.820·95-s − 0.203·97-s − 0.796·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3744} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.458818698\)
\(L(\frac12)\) \(\approx\) \(1.458818698\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.528415173892843248792449852501, −7.82084084051365803420222848669, −7.01827619251205044097992737879, −6.44590598763230428634660722803, −5.50106406018590452218737046834, −4.55670032524861699380705980567, −3.91523356905368567906196308191, −3.14497209841321370186861895865, −1.97108587636364051912502637846, −0.70292956182312160889985349614, 0.70292956182312160889985349614, 1.97108587636364051912502637846, 3.14497209841321370186861895865, 3.91523356905368567906196308191, 4.55670032524861699380705980567, 5.50106406018590452218737046834, 6.44590598763230428634660722803, 7.01827619251205044097992737879, 7.82084084051365803420222848669, 8.528415173892843248792449852501

Graph of the $Z$-function along the critical line