Properties

Label 2-3744-1.1-c1-0-1
Degree $2$
Conductor $3744$
Sign $1$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 2.23·7-s − 4.47·11-s − 13-s + 3·17-s + 4.47·19-s − 8.94·23-s + 4·25-s − 10·29-s + 6.70·35-s + 3·37-s − 6.70·43-s + 2.23·47-s − 1.99·49-s − 4·53-s + 13.4·55-s − 4.47·59-s + 3·65-s − 13.4·67-s + 6.70·71-s + 14·73-s + 10.0·77-s + 8.94·79-s + 17.8·83-s − 9·85-s + 10·89-s + 2.23·91-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.845·7-s − 1.34·11-s − 0.277·13-s + 0.727·17-s + 1.02·19-s − 1.86·23-s + 0.800·25-s − 1.85·29-s + 1.13·35-s + 0.493·37-s − 1.02·43-s + 0.326·47-s − 0.285·49-s − 0.549·53-s + 1.80·55-s − 0.582·59-s + 0.372·65-s − 1.63·67-s + 0.796·71-s + 1.63·73-s + 1.13·77-s + 1.00·79-s + 1.96·83-s − 0.976·85-s + 1.05·89-s + 0.234·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5283517105\)
\(L(\frac12)\) \(\approx\) \(0.5283517105\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 3T + 5T^{2} \)
7 \( 1 + 2.23T + 7T^{2} \)
11 \( 1 + 4.47T + 11T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 - 4.47T + 19T^{2} \)
23 \( 1 + 8.94T + 23T^{2} \)
29 \( 1 + 10T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 3T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 6.70T + 43T^{2} \)
47 \( 1 - 2.23T + 47T^{2} \)
53 \( 1 + 4T + 53T^{2} \)
59 \( 1 + 4.47T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 13.4T + 67T^{2} \)
71 \( 1 - 6.70T + 71T^{2} \)
73 \( 1 - 14T + 73T^{2} \)
79 \( 1 - 8.94T + 79T^{2} \)
83 \( 1 - 17.8T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.179973661375063929673139627961, −7.75259560555948641402045641659, −7.37186909254632687565611469841, −6.26172620424009590100880126171, −5.50627003545573358916860676169, −4.69922555728763204763305805093, −3.62155193860924093862598511061, −3.29805567501927992257675175863, −2.10768653893582006582456553436, −0.39758180144335461761380036596, 0.39758180144335461761380036596, 2.10768653893582006582456553436, 3.29805567501927992257675175863, 3.62155193860924093862598511061, 4.69922555728763204763305805093, 5.50627003545573358916860676169, 6.26172620424009590100880126171, 7.37186909254632687565611469841, 7.75259560555948641402045641659, 8.179973661375063929673139627961

Graph of the $Z$-function along the critical line