Properties

Label 2-3720-1.1-c1-0-45
Degree $2$
Conductor $3720$
Sign $-1$
Analytic cond. $29.7043$
Root an. cond. $5.45016$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 3.23·7-s + 9-s + 1.23·13-s + 15-s − 4.47·17-s − 2.47·19-s − 3.23·21-s − 4·23-s + 25-s − 27-s − 2.76·29-s − 31-s − 3.23·35-s + 9.23·37-s − 1.23·39-s − 6·41-s − 2.47·43-s − 45-s − 8.94·47-s + 3.47·49-s + 4.47·51-s − 0.472·53-s + 2.47·57-s + 11.2·59-s − 3.52·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.22·7-s + 0.333·9-s + 0.342·13-s + 0.258·15-s − 1.08·17-s − 0.567·19-s − 0.706·21-s − 0.834·23-s + 0.200·25-s − 0.192·27-s − 0.513·29-s − 0.179·31-s − 0.546·35-s + 1.51·37-s − 0.197·39-s − 0.937·41-s − 0.376·43-s − 0.149·45-s − 1.30·47-s + 0.496·49-s + 0.626·51-s − 0.0648·53-s + 0.327·57-s + 1.46·59-s − 0.451·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3720\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(29.7043\)
Root analytic conductor: \(5.45016\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
31 \( 1 + T \)
good7 \( 1 - 3.23T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 1.23T + 13T^{2} \)
17 \( 1 + 4.47T + 17T^{2} \)
19 \( 1 + 2.47T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 2.76T + 29T^{2} \)
37 \( 1 - 9.23T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 2.47T + 43T^{2} \)
47 \( 1 + 8.94T + 47T^{2} \)
53 \( 1 + 0.472T + 53T^{2} \)
59 \( 1 - 11.2T + 59T^{2} \)
61 \( 1 + 3.52T + 61T^{2} \)
67 \( 1 + 9.70T + 67T^{2} \)
71 \( 1 + 4.76T + 71T^{2} \)
73 \( 1 + 10.1T + 73T^{2} \)
79 \( 1 - 8.94T + 79T^{2} \)
83 \( 1 - 12.9T + 83T^{2} \)
89 \( 1 + 2.76T + 89T^{2} \)
97 \( 1 - 0.472T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.141938541201937503561861592057, −7.49496197242439804236899890035, −6.60726340629266522415052807740, −5.95440540124841276377983272944, −4.97165533591985074678432472638, −4.46254556829077584151830769313, −3.67902663584449257347626952077, −2.30539838373646264061693609889, −1.42507665826195754990578343714, 0, 1.42507665826195754990578343714, 2.30539838373646264061693609889, 3.67902663584449257347626952077, 4.46254556829077584151830769313, 4.97165533591985074678432472638, 5.95440540124841276377983272944, 6.60726340629266522415052807740, 7.49496197242439804236899890035, 8.141938541201937503561861592057

Graph of the $Z$-function along the critical line