Properties

Label 2-3720-1.1-c1-0-38
Degree $2$
Conductor $3720$
Sign $-1$
Analytic cond. $29.7043$
Root an. cond. $5.45016$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 1.23·7-s + 9-s − 3.23·13-s + 15-s + 4.47·17-s + 6.47·19-s + 1.23·21-s − 4·23-s + 25-s − 27-s − 7.23·29-s − 31-s + 1.23·35-s + 4.76·37-s + 3.23·39-s − 6·41-s + 6.47·43-s − 45-s + 8.94·47-s − 5.47·49-s − 4.47·51-s + 8.47·53-s − 6.47·57-s + 6.76·59-s − 12.4·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.467·7-s + 0.333·9-s − 0.897·13-s + 0.258·15-s + 1.08·17-s + 1.48·19-s + 0.269·21-s − 0.834·23-s + 0.200·25-s − 0.192·27-s − 1.34·29-s − 0.179·31-s + 0.208·35-s + 0.783·37-s + 0.518·39-s − 0.937·41-s + 0.986·43-s − 0.149·45-s + 1.30·47-s − 0.781·49-s − 0.626·51-s + 1.16·53-s − 0.857·57-s + 0.880·59-s − 1.59·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3720\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(29.7043\)
Root analytic conductor: \(5.45016\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
31 \( 1 + T \)
good7 \( 1 + 1.23T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
19 \( 1 - 6.47T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 7.23T + 29T^{2} \)
37 \( 1 - 4.76T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 6.47T + 43T^{2} \)
47 \( 1 - 8.94T + 47T^{2} \)
53 \( 1 - 8.47T + 53T^{2} \)
59 \( 1 - 6.76T + 59T^{2} \)
61 \( 1 + 12.4T + 61T^{2} \)
67 \( 1 - 3.70T + 67T^{2} \)
71 \( 1 + 9.23T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 + 8.94T + 79T^{2} \)
83 \( 1 + 4.94T + 83T^{2} \)
89 \( 1 + 7.23T + 89T^{2} \)
97 \( 1 + 8.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82351406466869634282047463533, −7.50933929473104756363391763666, −6.75756435225147561006332244579, −5.67746497518047663249582866714, −5.37940507506516526812860901885, −4.27157908298487974828005476628, −3.53045995532553252199680384501, −2.59024059186908339093324335047, −1.23441897082536577684323572463, 0, 1.23441897082536577684323572463, 2.59024059186908339093324335047, 3.53045995532553252199680384501, 4.27157908298487974828005476628, 5.37940507506516526812860901885, 5.67746497518047663249582866714, 6.75756435225147561006332244579, 7.50933929473104756363391763666, 7.82351406466869634282047463533

Graph of the $Z$-function along the critical line