L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s − 0.999i·8-s + (0.866 − 0.5i)9-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.499 − 0.866i)18-s + (−0.366 + 0.366i)29-s + (−0.866 − 0.499i)32-s + (−0.866 − 0.499i)34-s − 0.999i·36-s + (−0.866 − 0.5i)37-s + (1.5 + 0.866i)41-s + (0.866 − 0.5i)49-s + (1.36 + 0.366i)53-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s − 0.999i·8-s + (0.866 − 0.5i)9-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.499 − 0.866i)18-s + (−0.366 + 0.366i)29-s + (−0.866 − 0.499i)32-s + (−0.866 − 0.499i)34-s − 0.999i·36-s + (−0.866 − 0.5i)37-s + (1.5 + 0.866i)41-s + (0.866 − 0.5i)49-s + (1.36 + 0.366i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00214 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00214 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.230175336\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.230175336\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (1.86 - 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 83 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + 1.73T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.710634831505934995312334232435, −7.39122708870693502589553379190, −7.04973311115679630600332227704, −6.16630630524096794131161258355, −5.42308971380183987536545571423, −4.54423795827166947729060764740, −3.97613326194533055134601868448, −3.04606007709590653142412796751, −2.12913942530925576557983242255, −1.01569777304532563367244706446,
1.71114282316159398577028843638, 2.58480761748897134067001321638, 3.76578334414380738175481936607, 4.28419056230916022995080388534, 5.11308147018239799802673424525, 5.88631361975778330899983581780, 6.62720171493375899684254850927, 7.34270092077696640200414109778, 7.913799029393253964183523644013, 8.699392344330429433238845241828