L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−0.866 − 0.5i)9-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)17-s + (0.499 + 0.866i)18-s + (1.36 − 1.36i)29-s + (0.866 − 0.499i)32-s + (0.866 − 0.499i)34-s − 0.999i·36-s + (0.866 − 0.5i)37-s + (1.5 − 0.866i)41-s + (−0.866 − 0.5i)49-s + (−0.366 − 1.36i)53-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s − 0.999i·8-s + (−0.866 − 0.5i)9-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)17-s + (0.499 + 0.866i)18-s + (1.36 − 1.36i)29-s + (0.866 − 0.499i)32-s + (0.866 − 0.499i)34-s − 0.999i·36-s + (0.866 − 0.5i)37-s + (1.5 − 0.866i)41-s + (−0.866 − 0.5i)49-s + (−0.366 − 1.36i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7066067661\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7066067661\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
good | 3 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.133 - 0.5i)T + (-0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + (0.5 + 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 - 1.73T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.490548370178034188800370655686, −8.158829901910220661067472070608, −7.22291948598619160063246340474, −6.36555869723118341921555104845, −5.85914437662118805665244560444, −4.51213308020335398300577713798, −3.73479125326380864409426117049, −2.81413482607366074624121339362, −2.03084534267029494748203269663, −0.63715488049539210376889932840,
1.06564558925585274278139865091, 2.38937685184932740618524699464, 3.04665899878209660345667356242, 4.63403413753255771279975077233, 5.14000427105691417025556327076, 6.14471679369044540232954315180, 6.60623868799468579497116276098, 7.63009554727343376461733673327, 8.015148821316890787300850526453, 8.933133648121211777745864972127