L(s) = 1 | + 2-s + 4-s + 8-s + 9-s + 16-s + 18-s + 19-s − 23-s − 2·31-s + 32-s + 36-s − 37-s + 38-s − 41-s − 43-s − 46-s + 49-s + 53-s + 59-s − 2·62-s + 64-s + 72-s + 73-s − 74-s + 76-s + 79-s + 81-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s + 9-s + 16-s + 18-s + 19-s − 23-s − 2·31-s + 32-s + 36-s − 37-s + 38-s − 41-s − 43-s − 46-s + 49-s + 53-s + 59-s − 2·62-s + 64-s + 72-s + 73-s − 74-s + 76-s + 79-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.718650311\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.718650311\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 + T )^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.592937174691855517382500016546, −7.65094592422006091657213230332, −7.14249785478647335730961813380, −6.49165200467896357366146831755, −5.46800243957701479669054008505, −5.05397676496170003061080747826, −3.91413153262908031228894475825, −3.57014442408487516126598953603, −2.29006192310136176306588255000, −1.45346304321950118282171325050,
1.45346304321950118282171325050, 2.29006192310136176306588255000, 3.57014442408487516126598953603, 3.91413153262908031228894475825, 5.05397676496170003061080747826, 5.46800243957701479669054008505, 6.49165200467896357366146831755, 7.14249785478647335730961813380, 7.65094592422006091657213230332, 8.592937174691855517382500016546