Properties

Label 2-3700-1.1-c1-0-46
Degree $2$
Conductor $3700$
Sign $-1$
Analytic cond. $29.5446$
Root an. cond. $5.43549$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s − 2·9-s − 3·11-s + 6·13-s − 21-s − 2·23-s − 5·27-s − 6·29-s − 3·33-s + 37-s + 6·39-s − 9·41-s + 10·43-s − 47-s − 6·49-s − 53-s − 12·61-s + 2·63-s − 2·69-s − 5·71-s − 3·73-s + 3·77-s + 16·79-s + 81-s − 11·83-s − 6·87-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.904·11-s + 1.66·13-s − 0.218·21-s − 0.417·23-s − 0.962·27-s − 1.11·29-s − 0.522·33-s + 0.164·37-s + 0.960·39-s − 1.40·41-s + 1.52·43-s − 0.145·47-s − 6/7·49-s − 0.137·53-s − 1.53·61-s + 0.251·63-s − 0.240·69-s − 0.593·71-s − 0.351·73-s + 0.341·77-s + 1.80·79-s + 1/9·81-s − 1.20·83-s − 0.643·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3700\)    =    \(2^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(29.5446\)
Root analytic conductor: \(5.43549\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 + T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.114012092838855617855541915884, −7.70625654754739324427973981815, −6.59142287086646253480079955685, −5.91256197936574831748831189231, −5.28783982846590555348828148734, −4.07809925616778205203576578610, −3.38038987829739509149679811859, −2.65248198584538983022437228731, −1.56243220908714011720021399373, 0, 1.56243220908714011720021399373, 2.65248198584538983022437228731, 3.38038987829739509149679811859, 4.07809925616778205203576578610, 5.28783982846590555348828148734, 5.91256197936574831748831189231, 6.59142287086646253480079955685, 7.70625654754739324427973981815, 8.114012092838855617855541915884

Graph of the $Z$-function along the critical line