Properties

Label 2-3700-1.1-c1-0-38
Degree $2$
Conductor $3700$
Sign $-1$
Analytic cond. $29.5446$
Root an. cond. $5.43549$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 3·7-s + 6·9-s + 5·11-s − 2·13-s − 4·17-s − 4·19-s − 9·21-s − 6·23-s − 9·27-s + 6·29-s − 4·31-s − 15·33-s + 37-s + 6·39-s − 9·41-s − 10·43-s + 11·47-s + 2·49-s + 12·51-s + 11·53-s + 12·57-s − 8·59-s − 8·61-s + 18·63-s + 8·67-s + 18·69-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.13·7-s + 2·9-s + 1.50·11-s − 0.554·13-s − 0.970·17-s − 0.917·19-s − 1.96·21-s − 1.25·23-s − 1.73·27-s + 1.11·29-s − 0.718·31-s − 2.61·33-s + 0.164·37-s + 0.960·39-s − 1.40·41-s − 1.52·43-s + 1.60·47-s + 2/7·49-s + 1.68·51-s + 1.51·53-s + 1.58·57-s − 1.04·59-s − 1.02·61-s + 2.26·63-s + 0.977·67-s + 2.16·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3700\)    =    \(2^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(29.5446\)
Root analytic conductor: \(5.43549\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.154290748669424388477852300389, −7.07577695780277543069908710611, −6.60981396730997064078221589991, −5.96334860425801266051119721220, −5.09888884088066200767920008704, −4.48295490912051991181364428829, −3.93322311807360794055015553666, −2.09146483456977231198455242250, −1.30728896437273467280345954384, 0, 1.30728896437273467280345954384, 2.09146483456977231198455242250, 3.93322311807360794055015553666, 4.48295490912051991181364428829, 5.09888884088066200767920008704, 5.96334860425801266051119721220, 6.60981396730997064078221589991, 7.07577695780277543069908710611, 8.154290748669424388477852300389

Graph of the $Z$-function along the critical line