L(s) = 1 | − 3·3-s + 3·7-s + 6·9-s + 5·11-s − 2·13-s − 4·17-s − 4·19-s − 9·21-s − 6·23-s − 9·27-s + 6·29-s − 4·31-s − 15·33-s + 37-s + 6·39-s − 9·41-s − 10·43-s + 11·47-s + 2·49-s + 12·51-s + 11·53-s + 12·57-s − 8·59-s − 8·61-s + 18·63-s + 8·67-s + 18·69-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 1.13·7-s + 2·9-s + 1.50·11-s − 0.554·13-s − 0.970·17-s − 0.917·19-s − 1.96·21-s − 1.25·23-s − 1.73·27-s + 1.11·29-s − 0.718·31-s − 2.61·33-s + 0.164·37-s + 0.960·39-s − 1.40·41-s − 1.52·43-s + 1.60·47-s + 2/7·49-s + 1.68·51-s + 1.51·53-s + 1.58·57-s − 1.04·59-s − 1.02·61-s + 2.26·63-s + 0.977·67-s + 2.16·69-s + ⋯ |
Λ(s)=(=(3700s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3700s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | 1−T |
good | 3 | 1+pT+pT2 |
| 7 | 1−3T+pT2 |
| 11 | 1−5T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+4T+pT2 |
| 41 | 1+9T+pT2 |
| 43 | 1+10T+pT2 |
| 47 | 1−11T+pT2 |
| 53 | 1−11T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1+7T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−9T+pT2 |
| 89 | 1+16T+pT2 |
| 97 | 1+12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.154290748669424388477852300389, −7.07577695780277543069908710611, −6.60981396730997064078221589991, −5.96334860425801266051119721220, −5.09888884088066200767920008704, −4.48295490912051991181364428829, −3.93322311807360794055015553666, −2.09146483456977231198455242250, −1.30728896437273467280345954384, 0,
1.30728896437273467280345954384, 2.09146483456977231198455242250, 3.93322311807360794055015553666, 4.48295490912051991181364428829, 5.09888884088066200767920008704, 5.96334860425801266051119721220, 6.60981396730997064078221589991, 7.07577695780277543069908710611, 8.154290748669424388477852300389