Properties

Label 2-3700-1.1-c1-0-27
Degree $2$
Conductor $3700$
Sign $1$
Analytic cond. $29.5446$
Root an. cond. $5.43549$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·7-s − 2·9-s + 5·11-s + 6·17-s + 2·19-s + 3·21-s + 6·23-s − 5·27-s − 6·29-s + 4·31-s + 5·33-s − 37-s − 9·41-s − 4·43-s + 7·47-s + 2·49-s + 6·51-s − 9·53-s + 2·57-s − 4·59-s − 8·61-s − 6·63-s + 12·67-s + 6·69-s + 3·71-s + 5·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.13·7-s − 2/3·9-s + 1.50·11-s + 1.45·17-s + 0.458·19-s + 0.654·21-s + 1.25·23-s − 0.962·27-s − 1.11·29-s + 0.718·31-s + 0.870·33-s − 0.164·37-s − 1.40·41-s − 0.609·43-s + 1.02·47-s + 2/7·49-s + 0.840·51-s − 1.23·53-s + 0.264·57-s − 0.520·59-s − 1.02·61-s − 0.755·63-s + 1.46·67-s + 0.722·69-s + 0.356·71-s + 0.585·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3700\)    =    \(2^{2} \cdot 5^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(29.5446\)
Root analytic conductor: \(5.43549\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.027630815\)
\(L(\frac12)\) \(\approx\) \(3.027630815\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 5 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.468855010390743638464396248842, −7.919131120412641908685069714009, −7.20903657466271929470629370288, −6.31266220770231430562018298260, −5.42000856842620612735134617272, −4.79744205114466790913823205832, −3.67617283202346632372250852545, −3.15724192229422619035887123295, −1.89070845616260793551241380535, −1.08982337987453724323678127858, 1.08982337987453724323678127858, 1.89070845616260793551241380535, 3.15724192229422619035887123295, 3.67617283202346632372250852545, 4.79744205114466790913823205832, 5.42000856842620612735134617272, 6.31266220770231430562018298260, 7.20903657466271929470629370288, 7.919131120412641908685069714009, 8.468855010390743638464396248842

Graph of the $Z$-function along the critical line