Properties

Label 2-3700-1.1-c1-0-22
Degree $2$
Conductor $3700$
Sign $1$
Analytic cond. $29.5446$
Root an. cond. $5.43549$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·7-s + 9-s + 6·11-s + 4·13-s − 19-s − 4·21-s − 3·23-s − 4·27-s + 8·31-s + 12·33-s − 37-s + 8·39-s + 3·41-s + 43-s + 6·47-s − 3·49-s + 9·53-s − 2·57-s − 3·59-s + 14·61-s − 2·63-s + 4·67-s − 6·69-s − 6·71-s − 11·73-s − 12·77-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.755·7-s + 1/3·9-s + 1.80·11-s + 1.10·13-s − 0.229·19-s − 0.872·21-s − 0.625·23-s − 0.769·27-s + 1.43·31-s + 2.08·33-s − 0.164·37-s + 1.28·39-s + 0.468·41-s + 0.152·43-s + 0.875·47-s − 3/7·49-s + 1.23·53-s − 0.264·57-s − 0.390·59-s + 1.79·61-s − 0.251·63-s + 0.488·67-s − 0.722·69-s − 0.712·71-s − 1.28·73-s − 1.36·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3700\)    =    \(2^{2} \cdot 5^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(29.5446\)
Root analytic conductor: \(5.43549\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.058656608\)
\(L(\frac12)\) \(\approx\) \(3.058656608\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.695989539686053355825686203246, −7.991004020788604507695291405594, −7.01356727322076751258902240396, −6.36288828129844455987369462362, −5.79035280065025086351126524762, −4.29307313133350837372675703697, −3.79269438867354264172300053577, −3.10982568936962903235731259689, −2.11398944405819991558864161567, −1.01602265548218522018617154684, 1.01602265548218522018617154684, 2.11398944405819991558864161567, 3.10982568936962903235731259689, 3.79269438867354264172300053577, 4.29307313133350837372675703697, 5.79035280065025086351126524762, 6.36288828129844455987369462362, 7.01356727322076751258902240396, 7.991004020788604507695291405594, 8.695989539686053355825686203246

Graph of the $Z$-function along the critical line