L(s) = 1 | + i·2-s − 2.44i·3-s − 4-s + (−2 + i)5-s + 2.44·6-s − 0.449i·7-s − i·8-s − 2.99·9-s + (−1 − 2i)10-s − 4.89·11-s + 2.44i·12-s − 4i·13-s + 0.449·14-s + (2.44 + 4.89i)15-s + 16-s + 4.89i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.41i·3-s − 0.5·4-s + (−0.894 + 0.447i)5-s + 0.999·6-s − 0.169i·7-s − 0.353i·8-s − 0.999·9-s + (−0.316 − 0.632i)10-s − 1.47·11-s + 0.707i·12-s − 1.10i·13-s + 0.120·14-s + (0.632 + 1.26i)15-s + 0.250·16-s + 1.18i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0759629 - 0.321784i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0759629 - 0.321784i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (2 - i)T \) |
| 37 | \( 1 - iT \) |
good | 3 | \( 1 + 2.44iT - 3T^{2} \) |
| 7 | \( 1 + 0.449iT - 7T^{2} \) |
| 11 | \( 1 + 4.89T + 11T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 - 4.89iT - 17T^{2} \) |
| 19 | \( 1 + 8.44T + 19T^{2} \) |
| 23 | \( 1 + 0.898iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 6.44T + 31T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + 0.449iT - 47T^{2} \) |
| 53 | \( 1 + 7.79iT - 53T^{2} \) |
| 59 | \( 1 - 8.44T + 59T^{2} \) |
| 61 | \( 1 - 12T + 61T^{2} \) |
| 67 | \( 1 + 10.4iT - 67T^{2} \) |
| 71 | \( 1 + 4.89T + 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 + 1.55T + 79T^{2} \) |
| 83 | \( 1 - 14.4iT - 83T^{2} \) |
| 89 | \( 1 - 3.79T + 89T^{2} \) |
| 97 | \( 1 + 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88607436360215178185134946896, −10.37612395193190721557105716856, −8.370542814523166876391236218295, −8.130256828769222925289323381373, −7.26878216852945703828624592089, −6.47276140413716617276303367793, −5.43810859881776782190466656253, −3.90565565502326318883555417914, −2.37868514577669762177227038126, −0.21136481435607402780141540972,
2.55493343355214166295021067702, 3.91829740367064132770064468083, 4.57075871711358165675726411790, 5.43272995429474713041559300793, 7.28121656645077669305103295886, 8.526872077377252256414057112211, 9.124331558815135911099515565605, 10.08806446872995920168491709012, 10.91631382604810895767667417988, 11.45655123716916859900757025108