L(s) = 1 | + (0.5 − 0.866i)2-s + (0.241 − 0.900i)3-s + (−0.499 − 0.866i)4-s + (1.81 + 1.30i)5-s + (−0.658 − 0.658i)6-s + (0.0267 − 0.0999i)7-s − 0.999·8-s + (1.84 + 1.06i)9-s + (2.03 − 0.917i)10-s − 5.56i·11-s + (−0.900 + 0.241i)12-s + (−0.858 − 1.48i)13-s + (−0.0731 − 0.0731i)14-s + (1.61 − 1.31i)15-s + (−0.5 + 0.866i)16-s + (6.18 + 3.57i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.139 − 0.519i)3-s + (−0.249 − 0.433i)4-s + (0.811 + 0.584i)5-s + (−0.269 − 0.269i)6-s + (0.0101 − 0.0377i)7-s − 0.353·8-s + (0.615 + 0.355i)9-s + (0.644 − 0.290i)10-s − 1.67i·11-s + (−0.259 + 0.0696i)12-s + (−0.238 − 0.412i)13-s + (−0.0195 − 0.0195i)14-s + (0.416 − 0.340i)15-s + (−0.125 + 0.216i)16-s + (1.50 + 0.866i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.238 + 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.238 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.49435 - 1.17123i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.49435 - 1.17123i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-1.81 - 1.30i)T \) |
| 37 | \( 1 + (-5.72 + 2.05i)T \) |
good | 3 | \( 1 + (-0.241 + 0.900i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.0267 + 0.0999i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + 5.56iT - 11T^{2} \) |
| 13 | \( 1 + (0.858 + 1.48i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.18 - 3.57i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.98 + 0.530i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 3.96T + 23T^{2} \) |
| 29 | \( 1 + (5.95 + 5.95i)T + 29iT^{2} \) |
| 31 | \( 1 + (5.87 - 5.87i)T - 31iT^{2} \) |
| 41 | \( 1 + (8.14 - 4.70i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 1.18T + 43T^{2} \) |
| 47 | \( 1 + (-4.09 - 4.09i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.924 - 3.44i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.94 - 7.26i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (6.44 + 1.72i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (0.575 + 0.154i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-3.42 - 5.92i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.83 - 2.83i)T + 73iT^{2} \) |
| 79 | \( 1 + (12.0 + 3.22i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-1.87 - 6.98i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (0.962 - 0.257i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 - 16.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05974212910792056961418144907, −10.45353095063423259106055740847, −9.655469328546103943574552258537, −8.397432065274685881045496437574, −7.45065938155584162210555569269, −6.09913793937222845402041658340, −5.57410099318990557575159605310, −3.84763613726655378665195099431, −2.73773244204452211529133540287, −1.42143026937833509379230097607,
1.94487673554362970642613309497, 3.80832077434190181103475902916, 4.78614610041499965805412214864, 5.58218331084894904204772774365, 6.88848665593988133923660340874, 7.64241072647829480093741191857, 9.064611105958485736707540842269, 9.658332053924175536421757222951, 10.25804632762167516784545714101, 11.96922480208707289010707612977