L(s) = 1 | − i·2-s − 4-s + (−2 − i)5-s + (−2 + 2i)7-s + i·8-s + 3i·9-s + (−1 + 2i)10-s + 4i·13-s + (2 + 2i)14-s + 16-s − 2·17-s + 3·18-s + (2 − 2i)19-s + (2 + i)20-s + 4i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.894 − 0.447i)5-s + (−0.755 + 0.755i)7-s + 0.353i·8-s + i·9-s + (−0.316 + 0.632i)10-s + 1.10i·13-s + (0.534 + 0.534i)14-s + 0.250·16-s − 0.485·17-s + 0.707·18-s + (0.458 − 0.458i)19-s + (0.447 + 0.223i)20-s + 0.834i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.398582 + 0.343129i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.398582 + 0.343129i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (2 + i)T \) |
| 37 | \( 1 + (6 - i)T \) |
good | 3 | \( 1 - 3iT^{2} \) |
| 7 | \( 1 + (2 - 2i)T - 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + (-2 + 2i)T - 19iT^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 + (7 + 7i)T + 29iT^{2} \) |
| 31 | \( 1 + (4 - 4i)T - 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (2 - 2i)T - 47iT^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + (-2 + 2i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1 + i)T - 61iT^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + (5 - 5i)T - 73iT^{2} \) |
| 79 | \( 1 + (-12 + 12i)T - 79iT^{2} \) |
| 83 | \( 1 + (-4 - 4i)T + 83iT^{2} \) |
| 89 | \( 1 + (7 + 7i)T + 89iT^{2} \) |
| 97 | \( 1 + 12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52408095105280412824585195220, −11.01953573661147156632064910491, −9.623516144900915431462891346675, −9.050472398493849135696134044775, −8.049025178886690148935666509297, −6.99996654914562854651426053592, −5.52774474511993154997395398781, −4.52095980663305453796274492821, −3.38876272255592423234517035955, −1.99332978472701014131446014688,
0.34922906211715481459469904070, 3.31976316621932133557067001860, 3.94763464741997591106777175486, 5.48336745880939156782373721048, 6.68162990850165074635186615510, 7.22383955773552856424802437728, 8.226410853831396909943080683464, 9.258357554722968770592435204692, 10.25618407552202437619726152264, 11.05837547175172259104115780760