L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.362 − 0.995i)3-s + (0.766 − 0.642i)4-s + (2.23 − 0.0855i)5-s + 1.05i·6-s + (1.06 − 0.187i)7-s + (−0.500 + 0.866i)8-s + (1.43 + 1.20i)9-s + (−2.07 + 0.844i)10-s + (0.436 − 0.755i)11-s + (−0.362 − 0.995i)12-s + (−1.18 + 0.992i)13-s + (−0.933 + 0.539i)14-s + (0.724 − 2.25i)15-s + (0.173 − 0.984i)16-s + (0.626 + 0.525i)17-s + ⋯ |
L(s) = 1 | + (−0.664 + 0.241i)2-s + (0.209 − 0.574i)3-s + (0.383 − 0.321i)4-s + (0.999 − 0.0382i)5-s + 0.432i·6-s + (0.401 − 0.0707i)7-s + (−0.176 + 0.306i)8-s + (0.479 + 0.402i)9-s + (−0.654 + 0.267i)10-s + (0.131 − 0.227i)11-s + (−0.104 − 0.287i)12-s + (−0.328 + 0.275i)13-s + (−0.249 + 0.144i)14-s + (0.187 − 0.582i)15-s + (0.0434 − 0.246i)16-s + (0.151 + 0.127i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 + 0.261i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.965 + 0.261i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33178 - 0.177105i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33178 - 0.177105i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.939 - 0.342i)T \) |
| 5 | \( 1 + (-2.23 + 0.0855i)T \) |
| 37 | \( 1 + (-4.86 - 3.64i)T \) |
good | 3 | \( 1 + (-0.362 + 0.995i)T + (-2.29 - 1.92i)T^{2} \) |
| 7 | \( 1 + (-1.06 + 0.187i)T + (6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (-0.436 + 0.755i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.18 - 0.992i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.626 - 0.525i)T + (2.95 + 16.7i)T^{2} \) |
| 19 | \( 1 + (0.570 - 1.56i)T + (-14.5 - 12.2i)T^{2} \) |
| 23 | \( 1 + (2.32 + 4.02i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.84 + 1.06i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.18iT - 31T^{2} \) |
| 41 | \( 1 + (-1.27 + 1.06i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 - 2.12T + 43T^{2} \) |
| 47 | \( 1 + (-4.23 + 2.44i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.91 + 0.865i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (10.8 + 1.90i)T + (55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-1.22 - 1.45i)T + (-10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (-5.75 + 1.01i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (10.2 + 3.71i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 - 10.5iT - 73T^{2} \) |
| 79 | \( 1 + (4.86 - 0.858i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (2.61 - 3.11i)T + (-14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (15.0 + 2.66i)T + (83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (5.51 + 9.55i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.15126258888835201000305632541, −10.25885685708352099856142695519, −9.545298222973782372099519868704, −8.485587321230322976226930905208, −7.69456714689575516082007119843, −6.69911464020477873475385344005, −5.82824060953592961623872288623, −4.54403692759087823397713800046, −2.47924273863882558861653095602, −1.44263681158732501516862899886,
1.56126918573315380508468459800, 2.96073790367735540272843749188, 4.39023360288806083654100335434, 5.62011239370022229185555712017, 6.79719285681157756690442463415, 7.82155385870382322009994755301, 9.080643334686886288764874349364, 9.546201179054322207807334668853, 10.31978871328523238831526329590, 11.13905342667411000347012444173