| L(s) = 1 | + (0.939 − 0.342i)2-s + (0.489 − 1.34i)3-s + (0.766 − 0.642i)4-s + (0.720 + 2.11i)5-s − 1.42i·6-s + (1.53 − 0.270i)7-s + (0.500 − 0.866i)8-s + (0.731 + 0.614i)9-s + (1.40 + 1.74i)10-s + (−1.42 + 2.46i)11-s + (−0.489 − 1.34i)12-s + (2.83 − 2.38i)13-s + (1.34 − 0.777i)14-s + (3.19 + 0.0664i)15-s + (0.173 − 0.984i)16-s + (−5.50 − 4.61i)17-s + ⋯ |
| L(s) = 1 | + (0.664 − 0.241i)2-s + (0.282 − 0.775i)3-s + (0.383 − 0.321i)4-s + (0.322 + 0.946i)5-s − 0.583i·6-s + (0.578 − 0.102i)7-s + (0.176 − 0.306i)8-s + (0.243 + 0.204i)9-s + (0.443 + 0.551i)10-s + (−0.428 + 0.742i)11-s + (−0.141 − 0.387i)12-s + (0.787 − 0.660i)13-s + (0.359 − 0.207i)14-s + (0.825 + 0.0171i)15-s + (0.0434 − 0.246i)16-s + (−1.33 − 1.12i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.811 + 0.583i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.811 + 0.583i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.22041 - 0.715260i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.22041 - 0.715260i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 5 | \( 1 + (-0.720 - 2.11i)T \) |
| 37 | \( 1 + (5.84 - 1.67i)T \) |
| good | 3 | \( 1 + (-0.489 + 1.34i)T + (-2.29 - 1.92i)T^{2} \) |
| 7 | \( 1 + (-1.53 + 0.270i)T + (6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (1.42 - 2.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.83 + 2.38i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (5.50 + 4.61i)T + (2.95 + 16.7i)T^{2} \) |
| 19 | \( 1 + (0.620 - 1.70i)T + (-14.5 - 12.2i)T^{2} \) |
| 23 | \( 1 + (1.61 + 2.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (7.33 + 4.23i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.60iT - 31T^{2} \) |
| 41 | \( 1 + (-3.11 + 2.61i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 - 12.1T + 43T^{2} \) |
| 47 | \( 1 + (1.72 - 0.996i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (9.80 + 1.72i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-4.36 - 0.769i)T + (55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-2.54 - 3.02i)T + (-10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (-2.50 + 0.441i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (-10.6 - 3.88i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 - 8.43iT - 73T^{2} \) |
| 79 | \( 1 + (1.88 - 0.331i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (5.66 - 6.75i)T + (-14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (5.96 + 1.05i)T + (83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (2.61 + 4.52i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18481038817022227022165185346, −10.72618036173720177577819194808, −9.692895491432691462671984745498, −8.255429675614800919428414036701, −7.29938183312336605627195483221, −6.67331448633629927604627130779, −5.44913334325400877217010521573, −4.24254241499267744743309946923, −2.73702852763771551636282428242, −1.83109622058151599273070159739,
1.88391949255072737809077716348, 3.75767839900461873470000227058, 4.42348576102982432820352830128, 5.49478311393790655247441584717, 6.41653984126629230434022739428, 7.914065711077451427727613306210, 8.811684725117203078878521430922, 9.406655007643451258682694547536, 10.82749006406395572038824135862, 11.33531718467517721057375656114