| L(s) = 1 | + (0.939 − 0.342i)2-s + (0.0975 − 0.267i)3-s + (0.766 − 0.642i)4-s + (−2.05 + 0.877i)5-s − 0.285i·6-s + (3.86 − 0.681i)7-s + (0.500 − 0.866i)8-s + (2.23 + 1.87i)9-s + (−1.63 + 1.52i)10-s + (2.37 − 4.10i)11-s + (−0.0975 − 0.267i)12-s + (−3.78 + 3.17i)13-s + (3.39 − 1.96i)14-s + (0.0345 + 0.636i)15-s + (0.173 − 0.984i)16-s + (−0.839 − 0.704i)17-s + ⋯ |
| L(s) = 1 | + (0.664 − 0.241i)2-s + (0.0562 − 0.154i)3-s + (0.383 − 0.321i)4-s + (−0.919 + 0.392i)5-s − 0.116i·6-s + (1.46 − 0.257i)7-s + (0.176 − 0.306i)8-s + (0.745 + 0.625i)9-s + (−0.516 + 0.483i)10-s + (0.715 − 1.23i)11-s + (−0.0281 − 0.0773i)12-s + (−1.05 + 0.881i)13-s + (0.908 − 0.524i)14-s + (0.00891 + 0.164i)15-s + (0.0434 − 0.246i)16-s + (−0.203 − 0.170i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.99210 - 0.501844i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.99210 - 0.501844i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 5 | \( 1 + (2.05 - 0.877i)T \) |
| 37 | \( 1 + (-1.98 - 5.74i)T \) |
| good | 3 | \( 1 + (-0.0975 + 0.267i)T + (-2.29 - 1.92i)T^{2} \) |
| 7 | \( 1 + (-3.86 + 0.681i)T + (6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (-2.37 + 4.10i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.78 - 3.17i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (0.839 + 0.704i)T + (2.95 + 16.7i)T^{2} \) |
| 19 | \( 1 + (-2.10 + 5.79i)T + (-14.5 - 12.2i)T^{2} \) |
| 23 | \( 1 + (-3.19 - 5.53i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.58 + 2.64i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.56iT - 31T^{2} \) |
| 41 | \( 1 + (6.32 - 5.31i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + 9.58T + 43T^{2} \) |
| 47 | \( 1 + (7.68 - 4.43i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.04 + 0.360i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (7.40 + 1.30i)T + (55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-5.48 - 6.53i)T + (-10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (-3.23 + 0.571i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (13.2 + 4.81i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 - 2.00iT - 73T^{2} \) |
| 79 | \( 1 + (-12.7 + 2.25i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-0.774 + 0.923i)T + (-14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (2.09 + 0.370i)T + (83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (5.07 + 8.78i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47946125120514608368099100602, −10.93439314292732365233636360135, −9.584133925671141739284868473293, −8.317930654380897440729057876063, −7.42978525046962928994224413683, −6.74417124383855886103237332853, −5.00310182791546874962033382557, −4.47196432178066688985880060842, −3.15207205920705507404779076991, −1.54772987129236463106570483156,
1.74236802713167670483781887603, 3.65180654053782965973519973031, 4.59985830208231805884598013436, 5.21276503462496498599153745367, 6.89341253959009196999593890328, 7.62411348643214163856900511043, 8.434851251678485296738567482020, 9.640422353667409759101317076315, 10.72409396442465183839626885211, 11.86679908554125569613054148076