Properties

Label 2-368-1.1-c3-0-11
Degree $2$
Conductor $368$
Sign $1$
Analytic cond. $21.7127$
Root an. cond. $4.65968$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 20·5-s − 2·7-s + 54·9-s + 52·11-s + 43·13-s − 180·15-s − 50·17-s + 74·19-s − 18·21-s + 23·23-s + 275·25-s + 243·27-s − 7·29-s + 273·31-s + 468·33-s + 40·35-s − 4·37-s + 387·39-s + 123·41-s + 152·43-s − 1.08e3·45-s − 75·47-s − 339·49-s − 450·51-s + 86·53-s − 1.04e3·55-s + ⋯
L(s)  = 1  + 1.73·3-s − 1.78·5-s − 0.107·7-s + 2·9-s + 1.42·11-s + 0.917·13-s − 3.09·15-s − 0.713·17-s + 0.893·19-s − 0.187·21-s + 0.208·23-s + 11/5·25-s + 1.73·27-s − 0.0448·29-s + 1.58·31-s + 2.46·33-s + 0.193·35-s − 0.0177·37-s + 1.58·39-s + 0.468·41-s + 0.539·43-s − 3.57·45-s − 0.232·47-s − 0.988·49-s − 1.23·51-s + 0.222·53-s − 2.54·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(368\)    =    \(2^{4} \cdot 23\)
Sign: $1$
Analytic conductor: \(21.7127\)
Root analytic conductor: \(4.65968\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 368,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.902926577\)
\(L(\frac12)\) \(\approx\) \(2.902926577\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - p T \)
good3 \( 1 - p^{2} T + p^{3} T^{2} \)
5 \( 1 + 4 p T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 - 52 T + p^{3} T^{2} \)
13 \( 1 - 43 T + p^{3} T^{2} \)
17 \( 1 + 50 T + p^{3} T^{2} \)
19 \( 1 - 74 T + p^{3} T^{2} \)
29 \( 1 + 7 T + p^{3} T^{2} \)
31 \( 1 - 273 T + p^{3} T^{2} \)
37 \( 1 + 4 T + p^{3} T^{2} \)
41 \( 1 - 3 p T + p^{3} T^{2} \)
43 \( 1 - 152 T + p^{3} T^{2} \)
47 \( 1 + 75 T + p^{3} T^{2} \)
53 \( 1 - 86 T + p^{3} T^{2} \)
59 \( 1 - 444 T + p^{3} T^{2} \)
61 \( 1 - 262 T + p^{3} T^{2} \)
67 \( 1 + 764 T + p^{3} T^{2} \)
71 \( 1 - 21 T + p^{3} T^{2} \)
73 \( 1 - 681 T + p^{3} T^{2} \)
79 \( 1 + 426 T + p^{3} T^{2} \)
83 \( 1 + 902 T + p^{3} T^{2} \)
89 \( 1 + 1272 T + p^{3} T^{2} \)
97 \( 1 + 342 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16446876987415938193693301323, −9.750259473808404949439997033049, −8.800186206099451382949755420525, −8.355931519801712840914130619303, −7.45401779313951707491710299058, −6.63625181624990115751908626671, −4.37752286900095525915764053717, −3.79120108632881803709822560744, −2.94631692207057357503059881801, −1.15181243010546891159543362901, 1.15181243010546891159543362901, 2.94631692207057357503059881801, 3.79120108632881803709822560744, 4.37752286900095525915764053717, 6.63625181624990115751908626671, 7.45401779313951707491710299058, 8.355931519801712840914130619303, 8.800186206099451382949755420525, 9.750259473808404949439997033049, 11.16446876987415938193693301323

Graph of the $Z$-function along the critical line