L(s) = 1 | + (0.541 − 0.541i)2-s + (−0.707 + 0.707i)3-s + 0.414i·4-s + 0.765i·6-s + (0.765 + 0.765i)8-s − 1.00i·9-s + (−0.292 − 0.292i)12-s + 0.414·16-s + (1 + i)17-s + (−0.541 − 0.541i)18-s − 1.84·19-s + (1.30 + 1.30i)23-s − 1.08·24-s + (0.707 + 0.707i)27-s − 0.765i·31-s + (−0.541 + 0.541i)32-s + ⋯ |
L(s) = 1 | + (0.541 − 0.541i)2-s + (−0.707 + 0.707i)3-s + 0.414i·4-s + 0.765i·6-s + (0.765 + 0.765i)8-s − 1.00i·9-s + (−0.292 − 0.292i)12-s + 0.414·16-s + (1 + i)17-s + (−0.541 − 0.541i)18-s − 1.84·19-s + (1.30 + 1.30i)23-s − 1.08·24-s + (0.707 + 0.707i)27-s − 0.765i·31-s + (−0.541 + 0.541i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.281876262\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.281876262\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.541 + 0.541i)T - iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (-1 - i)T + iT^{2} \) |
| 19 | \( 1 + 1.84T + T^{2} \) |
| 23 | \( 1 + (-1.30 - 1.30i)T + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 0.765iT - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-1 - i)T + iT^{2} \) |
| 53 | \( 1 + (1.30 + 1.30i)T + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 0.765iT - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.41iT - T^{2} \) |
| 83 | \( 1 + (1 - i)T - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.907073573150725479228039646913, −8.206815118395592123162237744596, −7.38940658162499334730159175799, −6.45641544809565393145759077769, −5.68139792970767762901414642550, −4.96992490109756488249418588342, −4.12536683897027322485150155341, −3.65958315956225542120858858005, −2.71794852732404034163631025463, −1.47731326695969124815660502240,
0.71248444538622746935575364005, 1.84911825278374920517032835188, 2.97096976835035211294744198774, 4.38976932380038960320514264833, 4.87155412483905414170207301199, 5.64454477724971907549909379044, 6.32855256979303276313989386132, 6.89531291986773811936952321966, 7.45669659854669901318258605398, 8.386107507838137879403022623024