L(s) = 1 | − 3-s − 5-s + 3·7-s + 9-s − 5·11-s + 2·13-s + 15-s − 17-s + 19-s − 3·21-s − 4·23-s − 4·25-s − 27-s + 6·29-s + 10·31-s + 5·33-s − 3·35-s − 2·39-s − 11·43-s − 45-s − 9·47-s + 2·49-s + 51-s − 10·53-s + 5·55-s − 57-s + 4·59-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s + 1.13·7-s + 1/3·9-s − 1.50·11-s + 0.554·13-s + 0.258·15-s − 0.242·17-s + 0.229·19-s − 0.654·21-s − 0.834·23-s − 4/5·25-s − 0.192·27-s + 1.11·29-s + 1.79·31-s + 0.870·33-s − 0.507·35-s − 0.320·39-s − 1.67·43-s − 0.149·45-s − 1.31·47-s + 2/7·49-s + 0.140·51-s − 1.37·53-s + 0.674·55-s − 0.132·57-s + 0.520·59-s + ⋯ |
Λ(s)=(=(3648s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3648s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 19 | 1−T |
good | 5 | 1+T+pT2 |
| 7 | 1−3T+pT2 |
| 11 | 1+5T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−10T+pT2 |
| 37 | 1+pT2 |
| 41 | 1+pT2 |
| 43 | 1+11T+pT2 |
| 47 | 1+9T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−5T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1−13T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.137259653188121390855447482027, −7.65627920571478032514336271694, −6.60850791131037206491890289680, −5.90641506250154868855227026945, −4.90222652055451670072407703452, −4.68719487779910370709247985620, −3.52150549884707699550976993427, −2.43726074335480144289137857493, −1.36309445163470127656106423645, 0,
1.36309445163470127656106423645, 2.43726074335480144289137857493, 3.52150549884707699550976993427, 4.68719487779910370709247985620, 4.90222652055451670072407703452, 5.90641506250154868855227026945, 6.60850791131037206491890289680, 7.65627920571478032514336271694, 8.137259653188121390855447482027