L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.173 − 0.984i)5-s + (0.499 − 0.866i)8-s + (0.5 + 0.866i)10-s + (−0.173 + 0.984i)16-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (0.766 − 0.642i)23-s + (−0.939 + 0.342i)25-s + (−0.766 + 0.642i)31-s + (0.766 + 0.642i)34-s + (−0.173 + 0.984i)38-s + (−0.939 − 0.342i)40-s + (−0.5 + 0.866i)46-s + (−1.53 − 1.28i)47-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.173 − 0.984i)5-s + (0.499 − 0.866i)8-s + (0.5 + 0.866i)10-s + (−0.173 + 0.984i)16-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (0.766 − 0.642i)23-s + (−0.939 + 0.342i)25-s + (−0.766 + 0.642i)31-s + (0.766 + 0.642i)34-s + (−0.173 + 0.984i)38-s + (−0.939 − 0.342i)40-s + (−0.5 + 0.866i)46-s + (−1.53 − 1.28i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4656311250\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4656311250\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.173 + 0.984i)T \) |
good | 2 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 11 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 13 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (1.53 + 1.28i)T + (0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.558008821543746013523204286970, −7.958972809043822103653301670653, −7.13232667443589014139675014175, −6.66360930654074091325607898760, −5.35939091816205920623952527352, −4.78730389520930887368923593221, −3.99039677008518975206402101424, −2.90350869716948366315388397841, −1.50762449235076007186700718727, −0.40325269430920316962504812392,
1.40083980596807246969160995650, 2.30777041134171095976415363702, 3.33987648672607902671165217875, 4.17674372787268232015863668044, 5.27870194288078820679295773745, 6.01744093592913221152294665104, 6.90428425743757583774987484919, 7.68126884148236593537892841860, 8.173306778590585365621316716215, 9.049314210911441722342520964227