L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 + 0.642i)5-s + (−0.5 − 0.866i)8-s + (0.5 − 0.866i)10-s + (−0.766 + 0.642i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (0.939 − 0.342i)23-s + (0.173 + 0.984i)25-s + (0.939 − 0.342i)31-s + (−0.939 − 0.342i)34-s + (0.766 − 0.642i)38-s + (0.173 − 0.984i)40-s + (−0.5 − 0.866i)46-s + (−1.87 − 0.684i)47-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 + 0.642i)5-s + (−0.5 − 0.866i)8-s + (0.5 − 0.866i)10-s + (−0.766 + 0.642i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (0.939 − 0.342i)23-s + (0.173 + 0.984i)25-s + (0.939 − 0.342i)31-s + (−0.939 − 0.342i)34-s + (0.766 − 0.642i)38-s + (0.173 − 0.984i)40-s + (−0.5 − 0.866i)46-s + (−1.87 − 0.684i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.530294419\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.530294419\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.766 - 0.642i)T \) |
good | 2 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 13 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (1.87 + 0.684i)T + (0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.868355546509831695928703388614, −7.78484147575480843803383004300, −7.01049009752766796173779280548, −6.36182360992373209714628340488, −5.63059473914572955996070029756, −4.69484339025276265151916051614, −3.43627472177431147534552245088, −2.94774433366296085061769486561, −2.07099682339411435032142427070, −1.10804703631823423267509270960,
1.27545315398917443475644337942, 2.41455057050641743911004809742, 3.34804170001894437915050768054, 4.72426405935862315623885425211, 5.24004110440419328970067046082, 6.01815804087176865737865236062, 6.62232426234596818775759011783, 7.33051798552147385720047761529, 8.226269203512566491597420551607, 8.613479581421156957257486364742