L(s) = 1 | − 5-s + (0.5 − 0.866i)7-s + (1.5 − 2.59i)9-s + (1 + 1.73i)11-s + (3.5 − 0.866i)13-s + (1.5 − 2.59i)17-s + (3 − 5.19i)19-s + (2 + 3.46i)23-s − 4·25-s + (3.5 + 6.06i)29-s + 4·31-s + (−0.5 + 0.866i)35-s + (−4.5 − 7.79i)37-s + (−4.5 − 7.79i)41-s + (−5 + 8.66i)43-s + ⋯ |
L(s) = 1 | − 0.447·5-s + (0.188 − 0.327i)7-s + (0.5 − 0.866i)9-s + (0.301 + 0.522i)11-s + (0.970 − 0.240i)13-s + (0.363 − 0.630i)17-s + (0.688 − 1.19i)19-s + (0.417 + 0.722i)23-s − 0.800·25-s + (0.649 + 1.12i)29-s + 0.718·31-s + (−0.0845 + 0.146i)35-s + (−0.739 − 1.28i)37-s + (−0.702 − 1.21i)41-s + (−0.762 + 1.32i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32073 - 0.362980i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32073 - 0.362980i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-3.5 + 0.866i)T \) |
good | 3 | \( 1 + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + T + 5T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.5 - 6.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (4.5 + 7.79i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 + 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5 - 8.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (7 - 12.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.5 + 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4 - 6.92i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5 - 8.66i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49862052475461955828631029153, −10.43117212952993506618170516742, −9.471408403704956456003547074650, −8.656021550420366890114093580093, −7.38177118936365565035624442487, −6.81533664913621079047290992508, −5.41825273629224614893122090096, −4.20912539731422956209975365107, −3.21778095408038641361974355011, −1.14656171956604921705932898900,
1.60441124135414608045690655263, 3.36039004425604906387190846365, 4.46066407150155076441769736227, 5.69796008771547316423098302330, 6.68977739888406436917178181352, 8.127301024352791402083729070614, 8.319069613780472477798336206496, 9.822632282135129075629780317203, 10.57187929245578525278766899395, 11.60559186698398431116290080569