Properties

Label 2-364-1.1-c1-0-4
Degree $2$
Conductor $364$
Sign $-1$
Analytic cond. $2.90655$
Root an. cond. $1.70486$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s − 7-s + 9-s − 4·11-s + 13-s − 2·15-s − 2·17-s − 19-s + 2·21-s − 7·23-s − 4·25-s + 4·27-s − 5·29-s − 9·31-s + 8·33-s − 35-s − 2·37-s − 2·39-s + 2·41-s + 43-s + 45-s + 9·47-s + 49-s + 4·51-s + 3·53-s − 4·55-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.20·11-s + 0.277·13-s − 0.516·15-s − 0.485·17-s − 0.229·19-s + 0.436·21-s − 1.45·23-s − 4/5·25-s + 0.769·27-s − 0.928·29-s − 1.61·31-s + 1.39·33-s − 0.169·35-s − 0.328·37-s − 0.320·39-s + 0.312·41-s + 0.152·43-s + 0.149·45-s + 1.31·47-s + 1/7·49-s + 0.560·51-s + 0.412·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(364\)    =    \(2^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2.90655\)
Root analytic conductor: \(1.70486\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 364,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 14 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 - 5 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90103601626300724499148611895, −10.30495888961229291132172615214, −9.300313317494721558051107341205, −8.083973154130150661606579272593, −6.96069631485786572428198608010, −5.82577942199793673176864493442, −5.44176260711429074122925536322, −3.96547517025535220039746450659, −2.23637196597265827007393133486, 0, 2.23637196597265827007393133486, 3.96547517025535220039746450659, 5.44176260711429074122925536322, 5.82577942199793673176864493442, 6.96069631485786572428198608010, 8.083973154130150661606579272593, 9.300313317494721558051107341205, 10.30495888961229291132172615214, 10.90103601626300724499148611895

Graph of the $Z$-function along the critical line