L(s) = 1 | + (−0.809 + 0.587i)2-s + (−1.03 + 1.38i)3-s + (−0.309 + 0.951i)4-s + (1.66 − 2.28i)5-s + (0.0222 − 1.73i)6-s + (−1.34 − 0.437i)7-s + (−0.927 − 2.85i)8-s + (−0.853 − 2.87i)9-s + 2.82i·10-s + (−0.999 − 1.41i)12-s + (−2.49 − 3.43i)13-s + (1.34 − 0.437i)14-s + (1.45 + 4.67i)15-s + (0.809 + 0.587i)16-s + (−4.85 − 3.52i)17-s + (2.38 + 1.82i)18-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (−0.598 + 0.801i)3-s + (−0.154 + 0.475i)4-s + (0.743 − 1.02i)5-s + (0.00907 − 0.707i)6-s + (−0.508 − 0.165i)7-s + (−0.327 − 1.00i)8-s + (−0.284 − 0.958i)9-s + 0.894i·10-s + (−0.288 − 0.408i)12-s + (−0.691 − 0.951i)13-s + (0.359 − 0.116i)14-s + (0.375 + 1.20i)15-s + (0.202 + 0.146i)16-s + (−1.17 − 0.855i)17-s + (0.561 + 0.430i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.622 + 0.782i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.622 + 0.782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.463463 - 0.223647i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.463463 - 0.223647i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.03 - 1.38i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.809 - 0.587i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.66 + 2.28i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.34 + 0.437i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (2.49 + 3.43i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (4.85 + 3.52i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-4.03 + 1.31i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (0.618 - 1.90i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.61 + 1.17i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.47 + 7.60i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.85 - 5.70i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 4.24iT - 43T^{2} \) |
| 47 | \( 1 + (2.68 - 0.874i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (3.32 + 4.57i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (10.7 + 3.49i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (5.81 - 8.00i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 2T + 67T^{2} \) |
| 71 | \( 1 + (-1.66 + 2.28i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (1.34 + 0.437i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (2.49 + 3.43i)T + (-24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-12.9 - 9.40i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-1.61 + 1.17i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19531343495457804157868428661, −9.955188272773366361102250709602, −9.431938346551469587518735462666, −8.847856517734985529585962690566, −7.58392431624018028128944135255, −6.49269423836943464697055956243, −5.35786639751846779875288672988, −4.51846021838089340681344488323, −3.09320112531718476959431527089, −0.44736532433448732277083633163,
1.71376286035673470351072787189, 2.68006223524200454241509391923, 4.85565252064632847934521381546, 6.18336365145869121124574180868, 6.48400505893399663796340634157, 7.74397280150646444696857822077, 9.065721450383967611744839841001, 9.875624556561101251449898475376, 10.64390727563127942649120848495, 11.36182678766866339292560608552