L(s) = 1 | + (−3.15 + 1.02i)2-s + (−2.42 − 1.76i)3-s + (5.66 − 4.11i)4-s + (6.30 + 2.04i)5-s + (9.46 + 3.07i)6-s + (−6.47 + 4.70i)7-s + (−5.84 + 8.04i)8-s + (2.78 + 8.55i)9-s − 22·10-s − 21.0·12-s + (−1.23 − 3.80i)13-s + (15.5 − 21.4i)14-s + (−11.6 − 16.0i)15-s + (1.54 − 4.75i)16-s + (12.6 + 4.09i)17-s + (−17.5 − 24.1i)18-s + ⋯ |
L(s) = 1 | + (−1.57 + 0.512i)2-s + (−0.809 − 0.587i)3-s + (1.41 − 1.02i)4-s + (1.26 + 0.409i)5-s + (1.57 + 0.512i)6-s + (−0.924 + 0.671i)7-s + (−0.731 + 1.00i)8-s + (0.309 + 0.951i)9-s − 2.20·10-s − 1.75·12-s + (−0.0950 − 0.292i)13-s + (1.11 − 1.53i)14-s + (−0.779 − 1.07i)15-s + (0.0965 − 0.297i)16-s + (0.742 + 0.241i)17-s + (−0.974 − 1.34i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.139670 + 0.345975i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.139670 + 0.345975i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.42 + 1.76i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (3.15 - 1.02i)T + (3.23 - 2.35i)T^{2} \) |
| 5 | \( 1 + (-6.30 - 2.04i)T + (20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (6.47 - 4.70i)T + (15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (1.23 + 3.80i)T + (-136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-12.6 - 4.09i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (4.85 + 3.52i)T + (111. + 343. i)T^{2} \) |
| 23 | \( 1 + 6.63iT - 529T^{2} \) |
| 29 | \( 1 + (-23.3 - 32.1i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (8.03 + 24.7i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (24.2 - 17.6i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-7.79 + 10.7i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 + 42T + 1.84e3T^{2} \) |
| 47 | \( 1 + (50.6 - 69.7i)T + (-682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (56.7 - 18.4i)T + (2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-38.9 - 53.6i)T + (-1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (3.70 - 11.4i)T + (-3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 2T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-56.7 - 18.4i)T + (4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (59.8 - 43.4i)T + (1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-12.3 - 38.0i)T + (-5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (37.8 + 12.2i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 - 119. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-19.1 - 58.9i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16502525207825612298593289518, −10.25392865377868482023362899292, −9.830382909464908826862362489300, −8.862778880581841804220576638767, −7.79835258921240685641462329483, −6.66175794361035265859364653796, −6.26736460339532667110849931338, −5.37587793179053686057817274970, −2.63127881566113622619271851729, −1.36965477048823172204803280569,
0.33062370104172192175920274758, 1.66892633947050941979797349487, 3.36422530565556940997342845762, 5.04173827969910618898021394081, 6.24354288029026827876109352949, 7.05716831574332147636202162747, 8.477066751873401536856249876519, 9.523676586010378801195116532703, 9.900447155655385318658103004434, 10.38337022717241757495024248947