L(s) = 1 | + (2.51 − 0.817i)2-s + (2.47 − 1.70i)3-s + (2.42 − 1.76i)4-s + (2.68 + 0.874i)5-s + (4.82 − 6.29i)6-s + (6.05 − 4.39i)7-s + (−1.55 + 2.14i)8-s + (3.21 − 8.40i)9-s + 7.48·10-s + (2.99 − 8.48i)12-s + (6.93 + 21.3i)13-s + (11.6 − 16.0i)14-s + (8.13 − 2.41i)15-s + (−5.87 + 18.0i)16-s + (−20.1 − 6.54i)17-s + (1.22 − 23.7i)18-s + ⋯ |
L(s) = 1 | + (1.25 − 0.408i)2-s + (0.823 − 0.566i)3-s + (0.606 − 0.440i)4-s + (0.537 + 0.174i)5-s + (0.804 − 1.04i)6-s + (0.864 − 0.628i)7-s + (−0.194 + 0.267i)8-s + (0.357 − 0.933i)9-s + 0.748·10-s + (0.249 − 0.707i)12-s + (0.533 + 1.64i)13-s + (0.831 − 1.14i)14-s + (0.542 − 0.160i)15-s + (−0.366 + 1.12i)16-s + (−1.18 − 0.384i)17-s + (0.0679 − 1.32i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(4.03888 - 2.06731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.03888 - 2.06731i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.47 + 1.70i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-2.51 + 0.817i)T + (3.23 - 2.35i)T^{2} \) |
| 5 | \( 1 + (-2.68 - 0.874i)T + (20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (-6.05 + 4.39i)T + (15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (-6.93 - 21.3i)T + (-136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (20.1 + 6.54i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (12.1 + 8.79i)T + (111. + 343. i)T^{2} \) |
| 23 | \( 1 + 31.1iT - 529T^{2} \) |
| 29 | \( 1 + (-12.4 - 17.1i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (-9.27 - 28.5i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (-8.09 + 5.87i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (24.8 - 34.2i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 + 14.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-21.6 + 29.7i)T + (-682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-40.3 + 13.1i)T + (2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (19.9 + 27.4i)T + (-1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (30.0 - 92.5i)T + (-3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 + 42T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-61.8 - 20.1i)T + (4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (60.5 - 43.9i)T + (1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-6.93 - 21.3i)T + (-5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (20.1 + 6.54i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 62.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-22.8 - 70.3i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37676380815928272480897003904, −10.44159877021263659872160414902, −8.966775739336093187279470512113, −8.455006587605443064714721137695, −6.90994220016756166099898599808, −6.35832588736785292694000384114, −4.66362792585603776365367932130, −4.11149425286637410266115948076, −2.61853274550684360087267324609, −1.73020923672717207748334134390,
2.08026163764716885518245776406, 3.37593004951499189215217776222, 4.42797278959457008314847655654, 5.39676533834773716837473997294, 6.04691777106440695856080604311, 7.65930615134357095421036031328, 8.482036044772868706395091304254, 9.434295772523017592248168734172, 10.43077720769475254436189035171, 11.46431447942066937145159253945