Properties

Label 2-363-33.5-c2-0-55
Degree $2$
Conductor $363$
Sign $0.584 + 0.811i$
Analytic cond. $9.89103$
Root an. cond. $3.14500$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.51 − 0.817i)2-s + (2.47 − 1.70i)3-s + (2.42 − 1.76i)4-s + (2.68 + 0.874i)5-s + (4.82 − 6.29i)6-s + (6.05 − 4.39i)7-s + (−1.55 + 2.14i)8-s + (3.21 − 8.40i)9-s + 7.48·10-s + (2.99 − 8.48i)12-s + (6.93 + 21.3i)13-s + (11.6 − 16.0i)14-s + (8.13 − 2.41i)15-s + (−5.87 + 18.0i)16-s + (−20.1 − 6.54i)17-s + (1.22 − 23.7i)18-s + ⋯
L(s)  = 1  + (1.25 − 0.408i)2-s + (0.823 − 0.566i)3-s + (0.606 − 0.440i)4-s + (0.537 + 0.174i)5-s + (0.804 − 1.04i)6-s + (0.864 − 0.628i)7-s + (−0.194 + 0.267i)8-s + (0.357 − 0.933i)9-s + 0.748·10-s + (0.249 − 0.707i)12-s + (0.533 + 1.64i)13-s + (0.831 − 1.14i)14-s + (0.542 − 0.160i)15-s + (−0.366 + 1.12i)16-s + (−1.18 − 0.384i)17-s + (0.0679 − 1.32i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $0.584 + 0.811i$
Analytic conductor: \(9.89103\)
Root analytic conductor: \(3.14500\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{363} (269, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1),\ 0.584 + 0.811i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(4.03888 - 2.06731i\)
\(L(\frac12)\) \(\approx\) \(4.03888 - 2.06731i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.47 + 1.70i)T \)
11 \( 1 \)
good2 \( 1 + (-2.51 + 0.817i)T + (3.23 - 2.35i)T^{2} \)
5 \( 1 + (-2.68 - 0.874i)T + (20.2 + 14.6i)T^{2} \)
7 \( 1 + (-6.05 + 4.39i)T + (15.1 - 46.6i)T^{2} \)
13 \( 1 + (-6.93 - 21.3i)T + (-136. + 99.3i)T^{2} \)
17 \( 1 + (20.1 + 6.54i)T + (233. + 169. i)T^{2} \)
19 \( 1 + (12.1 + 8.79i)T + (111. + 343. i)T^{2} \)
23 \( 1 + 31.1iT - 529T^{2} \)
29 \( 1 + (-12.4 - 17.1i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (-9.27 - 28.5i)T + (-777. + 564. i)T^{2} \)
37 \( 1 + (-8.09 + 5.87i)T + (423. - 1.30e3i)T^{2} \)
41 \( 1 + (24.8 - 34.2i)T + (-519. - 1.59e3i)T^{2} \)
43 \( 1 + 14.9T + 1.84e3T^{2} \)
47 \( 1 + (-21.6 + 29.7i)T + (-682. - 2.10e3i)T^{2} \)
53 \( 1 + (-40.3 + 13.1i)T + (2.27e3 - 1.65e3i)T^{2} \)
59 \( 1 + (19.9 + 27.4i)T + (-1.07e3 + 3.31e3i)T^{2} \)
61 \( 1 + (30.0 - 92.5i)T + (-3.01e3 - 2.18e3i)T^{2} \)
67 \( 1 + 42T + 4.48e3T^{2} \)
71 \( 1 + (-61.8 - 20.1i)T + (4.07e3 + 2.96e3i)T^{2} \)
73 \( 1 + (60.5 - 43.9i)T + (1.64e3 - 5.06e3i)T^{2} \)
79 \( 1 + (-6.93 - 21.3i)T + (-5.04e3 + 3.66e3i)T^{2} \)
83 \( 1 + (20.1 + 6.54i)T + (5.57e3 + 4.04e3i)T^{2} \)
89 \( 1 + 62.2iT - 7.92e3T^{2} \)
97 \( 1 + (-22.8 - 70.3i)T + (-7.61e3 + 5.53e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37676380815928272480897003904, −10.44159877021263659872160414902, −8.966775739336093187279470512113, −8.455006587605443064714721137695, −6.90994220016756166099898599808, −6.35832588736785292694000384114, −4.66362792585603776365367932130, −4.11149425286637410266115948076, −2.61853274550684360087267324609, −1.73020923672717207748334134390, 2.08026163764716885518245776406, 3.37593004951499189215217776222, 4.42797278959457008314847655654, 5.39676533834773716837473997294, 6.04691777106440695856080604311, 7.65930615134357095421036031328, 8.482036044772868706395091304254, 9.434295772523017592248168734172, 10.43077720769475254436189035171, 11.46431447942066937145159253945

Graph of the $Z$-function along the critical line