L(s) = 1 | + (−3.41 + 1.10i)2-s + (2.93 + 0.630i)3-s + (7.17 − 5.21i)4-s + (1.98 + 0.644i)5-s + (−10.7 + 1.10i)6-s + (7.17 − 5.20i)7-s + (−10.2 + 14.1i)8-s + (8.20 + 3.69i)9-s − 7.48·10-s + (24.3 − 10.7i)12-s + (0.508 + 1.56i)13-s + (−18.6 + 25.7i)14-s + (5.41 + 3.14i)15-s + (8.39 − 25.8i)16-s + (11.8 + 3.83i)17-s + (−32.0 − 3.51i)18-s + ⋯ |
L(s) = 1 | + (−1.70 + 0.554i)2-s + (0.977 + 0.210i)3-s + (1.79 − 1.30i)4-s + (0.396 + 0.128i)5-s + (−1.78 + 0.183i)6-s + (1.02 − 0.744i)7-s + (−1.28 + 1.76i)8-s + (0.911 + 0.410i)9-s − 0.748·10-s + (2.02 − 0.897i)12-s + (0.0390 + 0.120i)13-s + (−1.33 + 1.83i)14-s + (0.360 + 0.209i)15-s + (0.524 − 1.61i)16-s + (0.695 + 0.225i)17-s + (−1.78 − 0.195i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.30450 + 0.308366i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30450 + 0.308366i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.93 - 0.630i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (3.41 - 1.10i)T + (3.23 - 2.35i)T^{2} \) |
| 5 | \( 1 + (-1.98 - 0.644i)T + (20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (-7.17 + 5.20i)T + (15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (-0.508 - 1.56i)T + (-136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-11.8 - 3.83i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (-8.54 - 6.21i)T + (111. + 343. i)T^{2} \) |
| 23 | \( 1 + 20.3iT - 529T^{2} \) |
| 29 | \( 1 + (6.82 + 9.39i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (7.22 + 22.2i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (5.86 - 4.25i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-22.8 + 31.4i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 - 15.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + (26.6 - 36.6i)T + (-682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-38.3 + 12.4i)T + (2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-66.5 - 91.5i)T + (-1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (23.9 - 73.7i)T + (-3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 62.9T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-9.71 - 3.15i)T + (4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (60.3 - 43.8i)T + (1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (26.6 + 82.0i)T + (-5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-11.2 - 3.64i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 74.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (23.8 + 73.3i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65047551970095048698380063629, −10.16399255734188451091190423962, −9.338064827961674463142275228241, −8.410716760908029135794965920774, −7.77698207840834899595655576238, −7.11423220851433892109042577180, −5.78752020729348632399787903271, −4.17207723704251599225221129633, −2.31867445843659785534572971597, −1.18772127531013355395984510220,
1.31926158916856479645758259274, 2.17323962917187874092954162784, 3.35979864893312394659853266186, 5.33051774106902039039080426777, 6.99175176381507686297718019924, 7.87542238879853568109521769311, 8.440059859323464514884493846933, 9.361096839334357134667149528169, 9.789906454422928759545882987977, 10.99572747426132054494858406761