L(s) = 1 | + (0.809 + 0.587i)2-s + (−1.03 − 1.38i)3-s + (−0.309 − 0.951i)4-s + (1.66 + 2.28i)5-s + (−0.0222 − 1.73i)6-s + (1.34 − 0.437i)7-s + (0.927 − 2.85i)8-s + (−0.853 + 2.87i)9-s + 2.82i·10-s + (−0.999 + 1.41i)12-s + (2.49 − 3.43i)13-s + (1.34 + 0.437i)14-s + (1.45 − 4.67i)15-s + (0.809 − 0.587i)16-s + (4.85 − 3.52i)17-s + (−2.38 + 1.82i)18-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−0.598 − 0.801i)3-s + (−0.154 − 0.475i)4-s + (0.743 + 1.02i)5-s + (−0.00907 − 0.707i)6-s + (0.508 − 0.165i)7-s + (0.327 − 1.00i)8-s + (−0.284 + 0.958i)9-s + 0.894i·10-s + (−0.288 + 0.408i)12-s + (0.691 − 0.951i)13-s + (0.359 + 0.116i)14-s + (0.375 − 1.20i)15-s + (0.202 − 0.146i)16-s + (1.17 − 0.855i)17-s + (−0.561 + 0.430i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.63716 - 0.450782i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.63716 - 0.450782i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.03 + 1.38i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.809 - 0.587i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.66 - 2.28i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.34 + 0.437i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.49 + 3.43i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.85 + 3.52i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (4.03 + 1.31i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (-0.618 - 1.90i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.61 - 1.17i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.47 - 7.60i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.85 - 5.70i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 4.24iT - 43T^{2} \) |
| 47 | \( 1 + (2.68 + 0.874i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (3.32 - 4.57i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (10.7 - 3.49i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-5.81 - 8.00i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 2T + 67T^{2} \) |
| 71 | \( 1 + (-1.66 - 2.28i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.34 + 0.437i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.49 + 3.43i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (12.9 - 9.40i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-1.61 - 1.17i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23443941666547172034925266293, −10.53953608102139038057351855460, −9.858583488167890327257147143164, −8.247942898970579481874759967398, −7.19011402709413792976438102271, −6.37780899503190884322647699487, −5.71393014784949276217280695320, −4.77604864721591887311190040098, −2.94413981217429274234868851825, −1.27356201544770830159433021649,
1.77455971032798835276554107537, 3.66284185601900276675392624022, 4.51056512854637323092813105710, 5.36574690089499183468973654924, 6.23580191892110503309236153142, 8.093011321590100677632535047949, 8.831091741665054130464672337587, 9.697561367161279951017701834084, 10.81248773275877029287394195194, 11.57304819356842413011919480265