L(s) = 1 | + (−1.55 + 2.14i)2-s + (2.38 + 1.82i)3-s + (−0.927 − 2.85i)4-s + (−1.66 − 2.28i)5-s + (−7.60 + 2.25i)6-s + (−2.31 − 7.11i)7-s + (−2.51 − 0.817i)8-s + (2.33 + 8.69i)9-s + 7.48·10-s + (2.99 − 8.48i)12-s + (−18.1 − 13.1i)13-s + (18.8 + 6.11i)14-s + (0.217 − 8.48i)15-s + (15.3 − 11.1i)16-s + (12.4 + 17.1i)17-s + (−22.2 − 8.51i)18-s + ⋯ |
L(s) = 1 | + (−0.777 + 1.07i)2-s + (0.793 + 0.608i)3-s + (−0.231 − 0.713i)4-s + (−0.332 − 0.457i)5-s + (−1.26 + 0.376i)6-s + (−0.330 − 1.01i)7-s + (−0.314 − 0.102i)8-s + (0.259 + 0.965i)9-s + 0.748·10-s + (0.249 − 0.707i)12-s + (−1.39 − 1.01i)13-s + (1.34 + 0.437i)14-s + (0.0145 − 0.565i)15-s + (0.960 − 0.697i)16-s + (0.731 + 1.00i)17-s + (−1.23 − 0.472i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 + 0.398i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.917 + 0.398i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.758798 - 0.157520i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.758798 - 0.157520i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.38 - 1.82i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.55 - 2.14i)T + (-1.23 - 3.80i)T^{2} \) |
| 5 | \( 1 + (1.66 + 2.28i)T + (-7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (2.31 + 7.11i)T + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (18.1 + 13.1i)T + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-12.4 - 17.1i)T + (-89.3 + 274. i)T^{2} \) |
| 19 | \( 1 + (-4.62 + 14.2i)T + (-292. - 212. i)T^{2} \) |
| 23 | \( 1 + 31.1iT - 529T^{2} \) |
| 29 | \( 1 + (-20.1 + 6.54i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (24.2 + 17.6i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (3.09 + 9.51i)T + (-1.10e3 + 804. i)T^{2} \) |
| 41 | \( 1 + (40.2 + 13.0i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 14.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-34.9 - 11.3i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (24.9 - 34.3i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (32.2 - 10.4i)T + (2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (-78.7 + 57.1i)T + (1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 + 42T + 4.48e3T^{2} \) |
| 71 | \( 1 + (38.2 + 52.6i)T + (-1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-23.1 - 71.1i)T + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (18.1 + 13.1i)T + (1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-12.4 - 17.1i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 + 62.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (59.8 + 43.4i)T + (2.90e3 + 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49645368838631961425442278058, −10.08845685261543909044671966580, −9.107756650438964125354636133236, −8.183009813129345630835728094240, −7.67417817237015441714898915084, −6.75821057173709449638505564317, −5.29016010726346344071787916813, −4.16741463280712334314265011489, −2.89858877287815823477222562231, −0.40608652120051245756036137108,
1.59525023488480420679372013662, 2.68326535958098249538050564345, 3.43549683339255798181061793009, 5.42584078247104931541422861886, 6.86467550666332203851312320181, 7.68512161582156060840109512315, 8.831252270376975533786154317517, 9.471638114369220652770636990689, 10.05867742934846456492753536510, 11.56210278286261675327136535281