L(s) = 1 | + (−1.69 + 2.32i)2-s + (2.68 − 1.33i)3-s + (−1.32 − 4.07i)4-s + (2.90 + 4.00i)5-s + (−1.42 + 8.51i)6-s + (−3.45 − 10.6i)7-s + (0.767 + 0.249i)8-s + (5.41 − 7.18i)9-s − 14.2·10-s + (−9.00 − 9.15i)12-s + (13.6 + 9.93i)13-s + (30.5 + 9.94i)14-s + (13.1 + 6.85i)15-s + (11.9 − 8.69i)16-s + (0.0367 + 0.0506i)17-s + (7.58 + 24.7i)18-s + ⋯ |
L(s) = 1 | + (−0.845 + 1.16i)2-s + (0.894 − 0.446i)3-s + (−0.330 − 1.01i)4-s + (0.581 + 0.800i)5-s + (−0.237 + 1.41i)6-s + (−0.493 − 1.51i)7-s + (0.0959 + 0.0311i)8-s + (0.601 − 0.798i)9-s − 1.42·10-s + (−0.750 − 0.763i)12-s + (1.05 + 0.764i)13-s + (2.18 + 0.710i)14-s + (0.877 + 0.456i)15-s + (0.748 − 0.543i)16-s + (0.00216 + 0.00297i)17-s + (0.421 + 1.37i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.526i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.850 - 0.526i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.50496 + 0.428065i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.50496 + 0.428065i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.68 + 1.33i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.69 - 2.32i)T + (-1.23 - 3.80i)T^{2} \) |
| 5 | \( 1 + (-2.90 - 4.00i)T + (-7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (3.45 + 10.6i)T + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (-13.6 - 9.93i)T + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-0.0367 - 0.0506i)T + (-89.3 + 274. i)T^{2} \) |
| 19 | \( 1 + (-1.66 + 5.11i)T + (-292. - 212. i)T^{2} \) |
| 23 | \( 1 + 8.69iT - 529T^{2} \) |
| 29 | \( 1 + (-47.5 + 15.4i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (-19.8 - 14.4i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (12.1 + 37.3i)T + (-1.10e3 + 804. i)T^{2} \) |
| 41 | \( 1 + (-41.7 - 13.5i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 - 0.201T + 1.84e3T^{2} \) |
| 47 | \( 1 + (14.1 + 4.60i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (57.5 - 79.2i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (-13.7 + 4.47i)T + (2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (23.7 - 17.2i)T + (1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 - 82.8T + 4.48e3T^{2} \) |
| 71 | \( 1 + (15.6 + 21.6i)T + (-1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-4.31 - 13.2i)T + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (40.6 + 29.4i)T + (1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-35.4 - 48.7i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 - 40.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-24.9 - 18.1i)T + (2.90e3 + 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81625819708825708010813153912, −10.05027989618291553509705126188, −9.277669557541861543941023120914, −8.330919525503257894768557172669, −7.46208931717846695850185385075, −6.59576051512297645062159665020, −6.37158829188719787724656365911, −4.14347675387404753473290359740, −2.90118133692238021654975936044, −0.996025374422668756997850998324,
1.36848248538966421861547187393, 2.55993920489539134089198503629, 3.40153388847204917182798361090, 5.11524711054123081273231899744, 6.14244276059160677454503178874, 8.269526164459859653842299159438, 8.567483224169696156859331818089, 9.425539497205139947937573648556, 9.907320367934598678931990787719, 10.90646904030963282717996241014