L(s) = 1 | + (0.399 − 0.550i)2-s + (2.97 − 0.384i)3-s + (1.09 + 3.36i)4-s + (−3.81 − 5.25i)5-s + (0.978 − 1.79i)6-s + (2.89 + 8.90i)7-s + (4.87 + 1.58i)8-s + (8.70 − 2.28i)9-s − 4.41·10-s + (4.54 + 9.58i)12-s + (3.37 + 2.45i)13-s + (6.06 + 1.96i)14-s + (−13.3 − 14.1i)15-s + (−8.62 + 6.26i)16-s + (17.5 + 24.2i)17-s + (2.22 − 5.70i)18-s + ⋯ |
L(s) = 1 | + (0.199 − 0.275i)2-s + (0.991 − 0.128i)3-s + (0.273 + 0.840i)4-s + (−0.762 − 1.05i)5-s + (0.163 − 0.298i)6-s + (0.413 + 1.27i)7-s + (0.609 + 0.198i)8-s + (0.967 − 0.253i)9-s − 0.441·10-s + (0.378 + 0.799i)12-s + (0.259 + 0.188i)13-s + (0.432 + 0.140i)14-s + (−0.891 − 0.943i)15-s + (−0.538 + 0.391i)16-s + (1.03 + 1.42i)17-s + (0.123 − 0.317i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 - 0.218i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.975 - 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.69814 + 0.297865i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.69814 + 0.297865i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.97 + 0.384i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.399 + 0.550i)T + (-1.23 - 3.80i)T^{2} \) |
| 5 | \( 1 + (3.81 + 5.25i)T + (-7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (-2.89 - 8.90i)T + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (-3.37 - 2.45i)T + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-17.5 - 24.2i)T + (-89.3 + 274. i)T^{2} \) |
| 19 | \( 1 + (-3.18 + 9.78i)T + (-292. - 212. i)T^{2} \) |
| 23 | \( 1 + 27.8iT - 529T^{2} \) |
| 29 | \( 1 + (-15.3 + 4.99i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (-14.2 - 10.3i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (-4.49 - 13.8i)T + (-1.10e3 + 804. i)T^{2} \) |
| 41 | \( 1 + (33.2 + 10.8i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 64.3T + 1.84e3T^{2} \) |
| 47 | \( 1 + (9.94 + 3.23i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-35.5 + 48.8i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (38.6 - 12.5i)T + (2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (19.0 - 13.8i)T + (1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 - 30.8T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-0.585 - 0.805i)T + (-1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (28.8 + 88.8i)T + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (-91.4 - 66.4i)T + (1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (61.1 + 84.1i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 - 20.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (153. + 111. i)T + (2.90e3 + 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70776695577994571078514998463, −10.32488458682521655507088714561, −8.930571418801947226311237424046, −8.319856893696727087860603313741, −8.059723721006562175656706674930, −6.62139975478499383959260631518, −4.97907387288293204304879472269, −4.01717439250624861508619361068, −2.93450628980261249443409764262, −1.66586996470975010047573926690,
1.24691299760903864214697990035, 3.02054461050753820854195972009, 3.96092752877634040620570403667, 5.15201151463478966536710207463, 6.75985670948956957576018071413, 7.40772910093026427022972968119, 7.967111893195468041533837971384, 9.614570301229940960120776531949, 10.23054079743524312440416224368, 10.99851113586778342177828801954