L(s) = 1 | + (−1.79 + 2.47i)2-s + (2.88 + 0.805i)3-s + (−1.65 − 5.10i)4-s + (−3.90 − 5.37i)5-s + (−7.19 + 5.70i)6-s + (0.946 + 2.91i)7-s + (3.97 + 1.29i)8-s + (7.70 + 4.65i)9-s + 20.3·10-s + (−0.678 − 16.0i)12-s + (13.1 + 9.54i)13-s + (−8.91 − 2.89i)14-s + (−6.94 − 18.6i)15-s + (7.01 − 5.09i)16-s + (−0.473 − 0.651i)17-s + (−25.3 + 10.6i)18-s + ⋯ |
L(s) = 1 | + (−0.899 + 1.23i)2-s + (0.963 + 0.268i)3-s + (−0.414 − 1.27i)4-s + (−0.780 − 1.07i)5-s + (−1.19 + 0.950i)6-s + (0.135 + 0.416i)7-s + (0.496 + 0.161i)8-s + (0.855 + 0.517i)9-s + 2.03·10-s + (−0.0565 − 1.34i)12-s + (1.01 + 0.734i)13-s + (−0.636 − 0.206i)14-s + (−0.463 − 1.24i)15-s + (0.438 − 0.318i)16-s + (−0.0278 − 0.0383i)17-s + (−1.41 + 0.593i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.690 - 0.723i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.690 - 0.723i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.463673 + 1.08337i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.463673 + 1.08337i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.88 - 0.805i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.79 - 2.47i)T + (-1.23 - 3.80i)T^{2} \) |
| 5 | \( 1 + (3.90 + 5.37i)T + (-7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (-0.946 - 2.91i)T + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (-13.1 - 9.54i)T + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (0.473 + 0.651i)T + (-89.3 + 274. i)T^{2} \) |
| 19 | \( 1 + (6.39 - 19.6i)T + (-292. - 212. i)T^{2} \) |
| 23 | \( 1 - 27.3iT - 529T^{2} \) |
| 29 | \( 1 + (3.59 - 1.16i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (-16.8 - 12.2i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (-11.9 - 36.6i)T + (-1.10e3 + 804. i)T^{2} \) |
| 41 | \( 1 + (-12.7 - 4.13i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 43.4T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-18.9 - 6.14i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (10.3 - 14.2i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (41.3 - 13.4i)T + (2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (-8.61 + 6.26i)T + (1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 - 72.2T + 4.48e3T^{2} \) |
| 71 | \( 1 + (1.51 + 2.07i)T + (-1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-14.0 - 43.2i)T + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (79.4 + 57.7i)T + (1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (18.7 + 25.8i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 - 18.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-51.2 - 37.2i)T + (2.90e3 + 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53945914724366347667735032745, −10.09153078933591965392204843637, −9.222658338580695535741555846112, −8.510684946707490089644595605886, −8.167802385571654332955595037577, −7.19452348761907301915713719532, −5.95236311384484219357966388518, −4.71046758975023218937560216189, −3.57177848048152209133597391947, −1.39939643275922483795621172930,
0.71911170830890336559998061193, 2.36867298976533343821066579844, 3.23162278351158056381901131858, 4.10129139748947978127985117098, 6.45019724419085043094436157341, 7.50513790862647058514111907124, 8.277763672911477514445497782832, 9.025174963804527293829461677396, 10.16788450719849017671040775337, 10.79786342395469284673269585931