L(s) = 1 | + (−0.804 − 2.89i)3-s + (1.23 + 3.80i)4-s + (−5.84 − 8.04i)5-s + (−7.70 + 4.65i)9-s + (9.99 − 6.63i)12-s + (−18.5 + 23.3i)15-s + (−12.9 + 9.40i)16-s + (23.3 − 32.1i)20-s + 29.8i·23-s + (−22.8 + 70.3i)25-s + (19.6 + 18.5i)27-s + (−29.9 − 21.7i)31-s + (−27.2 − 23.5i)36-s + (7.72 + 23.7i)37-s + (82.5 + 34.8i)45-s + ⋯ |
L(s) = 1 | + (−0.268 − 0.963i)3-s + (0.309 + 0.951i)4-s + (−1.16 − 1.60i)5-s + (−0.856 + 0.516i)9-s + (0.833 − 0.552i)12-s + (−1.23 + 1.55i)15-s + (−0.809 + 0.587i)16-s + (1.16 − 1.60i)20-s + 1.29i·23-s + (−0.914 + 2.81i)25-s + (0.727 + 0.686i)27-s + (−0.965 − 0.701i)31-s + (−0.756 − 0.654i)36-s + (0.208 + 0.642i)37-s + (1.83 + 0.773i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.493 - 0.869i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.493 - 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0383069 + 0.0657827i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0383069 + 0.0657827i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.804 + 2.89i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-1.23 - 3.80i)T^{2} \) |
| 5 | \( 1 + (5.84 + 8.04i)T + (-7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-89.3 + 274. i)T^{2} \) |
| 19 | \( 1 + (-292. - 212. i)T^{2} \) |
| 23 | \( 1 - 29.8iT - 529T^{2} \) |
| 29 | \( 1 + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (29.9 + 21.7i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (-7.72 - 23.7i)T + (-1.10e3 + 804. i)T^{2} \) |
| 41 | \( 1 + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 1.84e3T^{2} \) |
| 47 | \( 1 + (75.7 + 24.5i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (46.7 - 64.3i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (47.3 - 15.3i)T + (2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 + 35T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-29.2 - 40.2i)T + (-1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 + 149. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (76.8 + 55.8i)T + (2.90e3 + 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69135117528457414759433093263, −11.22351638517493176600326560558, −9.278653152646524307403420092095, −8.420305891731577273625774025745, −7.79946917017786796071016477194, −7.14152736242700873133784665987, −5.66430497014266425918713994328, −4.51929791049235712820210233850, −3.36600568746237269420866389190, −1.55675684882983732842631525240,
0.03510110416635932729833286861, 2.65389595159377747391350088693, 3.73974588195325459230189200692, 4.86062257783906000068136296546, 6.19742034487462328741483714107, 6.84714197860669595738244544130, 8.032705208859455283477282589367, 9.342726936773031711139246063470, 10.36716406644405769759399950716, 10.82378252539933121678699593791