L(s) = 1 | + (2.51 + 0.817i)2-s + (−0.853 − 2.87i)3-s + (2.42 + 1.76i)4-s + (−2.68 + 0.874i)5-s + (0.203 − 7.93i)6-s + (−6.05 − 4.39i)7-s + (−1.55 − 2.14i)8-s + (−7.54 + 4.90i)9-s − 7.48·10-s + (3.00 − 8.48i)12-s + (−6.93 + 21.3i)13-s + (−11.6 − 16.0i)14-s + (4.80 + 6.99i)15-s + (−5.87 − 18.0i)16-s + (−20.1 + 6.54i)17-s + (−22.9 + 6.18i)18-s + ⋯ |
L(s) = 1 | + (1.25 + 0.408i)2-s + (−0.284 − 0.958i)3-s + (0.606 + 0.440i)4-s + (−0.537 + 0.174i)5-s + (0.0339 − 1.32i)6-s + (−0.864 − 0.628i)7-s + (−0.194 − 0.267i)8-s + (−0.838 + 0.545i)9-s − 0.748·10-s + (0.250 − 0.707i)12-s + (−0.533 + 1.64i)13-s + (−0.831 − 1.14i)14-s + (0.320 + 0.466i)15-s + (−0.366 − 1.12i)16-s + (−1.18 + 0.384i)17-s + (−1.27 + 0.343i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0924442 - 0.689665i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0924442 - 0.689665i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.853 + 2.87i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-2.51 - 0.817i)T + (3.23 + 2.35i)T^{2} \) |
| 5 | \( 1 + (2.68 - 0.874i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (6.05 + 4.39i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (6.93 - 21.3i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (20.1 - 6.54i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-12.1 + 8.79i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 + 31.1iT - 529T^{2} \) |
| 29 | \( 1 + (-12.4 + 17.1i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-9.27 + 28.5i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (-8.09 - 5.87i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (24.8 + 34.2i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 - 14.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + (21.6 + 29.7i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (40.3 + 13.1i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-19.9 + 27.4i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-30.0 - 92.5i)T + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 42T + 4.48e3T^{2} \) |
| 71 | \( 1 + (61.8 - 20.1i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-60.5 - 43.9i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (6.93 - 21.3i)T + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (20.1 - 6.54i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 62.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-22.8 + 70.3i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35547056650955396211352313477, −9.936282927453056847058547139053, −8.775051043984409169294465996214, −7.33800139401629535890611146783, −6.77301746390763347786072986886, −6.16683899637883346140696086092, −4.72929125965433413546849894456, −3.88446504708916299234736015096, −2.45444758731655070931139029568, −0.20079447340799948611478264817,
2.88467536300897889755684168631, 3.46660567352332143605623499328, 4.70573406272694777679163984301, 5.42626745774935893373423584092, 6.31734176100077716669742543756, 7.969976785086212847085444400135, 9.070008607444822993919407148227, 9.963235820506454349509447547835, 10.97511758011118887210083185821, 11.82342048342734593325658715650