L(s) = 1 | + (3.32 + 1.08i)2-s + (−0.440 − 2.96i)3-s + (6.67 + 4.85i)4-s + (7.51 − 2.44i)5-s + (1.74 − 10.3i)6-s + (−1.46 − 1.06i)7-s + (8.75 + 12.0i)8-s + (−8.61 + 2.61i)9-s + 27.6·10-s + (11.4 − 21.9i)12-s + (0.0219 − 0.0674i)13-s + (−3.73 − 5.13i)14-s + (−10.5 − 21.2i)15-s + (5.91 + 18.2i)16-s + (3.48 − 1.13i)17-s + (−31.5 − 0.612i)18-s + ⋯ |
L(s) = 1 | + (1.66 + 0.540i)2-s + (−0.146 − 0.989i)3-s + (1.66 + 1.21i)4-s + (1.50 − 0.488i)5-s + (0.290 − 1.72i)6-s + (−0.209 − 0.152i)7-s + (1.09 + 1.50i)8-s + (−0.956 + 0.290i)9-s + 2.76·10-s + (0.954 − 1.82i)12-s + (0.00168 − 0.00518i)13-s + (−0.266 − 0.367i)14-s + (−0.703 − 1.41i)15-s + (0.369 + 1.13i)16-s + (0.204 − 0.0665i)17-s + (−1.75 − 0.0340i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.212i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.977 + 0.212i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(4.77968 - 0.514218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.77968 - 0.514218i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.440 + 2.96i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-3.32 - 1.08i)T + (3.23 + 2.35i)T^{2} \) |
| 5 | \( 1 + (-7.51 + 2.44i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (1.46 + 1.06i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-0.0219 + 0.0674i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (-3.48 + 1.13i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (21.2 - 15.4i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 - 6.84iT - 529T^{2} \) |
| 29 | \( 1 + (17.7 - 24.4i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-13.0 + 40.1i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (2.99 + 2.17i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-41.7 - 57.5i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 13.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-16.0 - 22.1i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-20.6 - 6.71i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (46.9 - 64.5i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-24.4 - 75.2i)T + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 101.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-44.1 + 14.3i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (93.4 + 67.8i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-19.4 + 59.8i)T + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (80.3 - 26.1i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 45.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (29.7 - 91.5i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70429556315982732633867613457, −10.50619201551126389432702401434, −9.229308041384419056168638120153, −7.965821045633918487506115521360, −6.91605090384870321680778116115, −5.96214856819203324434966119549, −5.70731860118032261133186299928, −4.42923908771293132704405715234, −2.83940236372316820850097810437, −1.70425933992503874991617067677,
2.16324443172293603590303059359, 3.03317832630518320697138038960, 4.25673761249161194350418880207, 5.25593981564097782818740144237, 5.98999478141532484262909235681, 6.70103012808634496162270048657, 8.849059308848790789117685511762, 9.844196102609972166112343416342, 10.58897543303965566260216250828, 11.14240389305967423280889006832