L(s) = 1 | + (3.15 + 1.02i)2-s + (−2.42 + 1.76i)3-s + (5.66 + 4.11i)4-s + (−6.30 + 2.04i)5-s + (−9.46 + 3.07i)6-s + (−6.47 − 4.70i)7-s + (5.84 + 8.04i)8-s + (2.78 − 8.55i)9-s − 22·10-s − 21.0·12-s + (−1.23 + 3.80i)13-s + (−15.5 − 21.4i)14-s + (11.6 − 16.0i)15-s + (1.54 + 4.75i)16-s + (−12.6 + 4.09i)17-s + (17.5 − 24.1i)18-s + ⋯ |
L(s) = 1 | + (1.57 + 0.512i)2-s + (−0.809 + 0.587i)3-s + (1.41 + 1.02i)4-s + (−1.26 + 0.409i)5-s + (−1.57 + 0.512i)6-s + (−0.924 − 0.671i)7-s + (0.731 + 1.00i)8-s + (0.309 − 0.951i)9-s − 2.20·10-s − 1.75·12-s + (−0.0950 + 0.292i)13-s + (−1.11 − 1.53i)14-s + (0.779 − 1.07i)15-s + (0.0965 + 0.297i)16-s + (−0.742 + 0.241i)17-s + (0.974 − 1.34i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.719 + 0.694i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.719 + 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.174674 - 0.432683i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.174674 - 0.432683i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.42 - 1.76i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-3.15 - 1.02i)T + (3.23 + 2.35i)T^{2} \) |
| 5 | \( 1 + (6.30 - 2.04i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (6.47 + 4.70i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (1.23 - 3.80i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (12.6 - 4.09i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (4.85 - 3.52i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 + 6.63iT - 529T^{2} \) |
| 29 | \( 1 + (23.3 - 32.1i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (8.03 - 24.7i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (24.2 + 17.6i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (7.79 + 10.7i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 42T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-50.6 - 69.7i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-56.7 - 18.4i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (38.9 - 53.6i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (3.70 + 11.4i)T + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 - 2T + 4.48e3T^{2} \) |
| 71 | \( 1 + (56.7 - 18.4i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (59.8 + 43.4i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-12.3 + 38.0i)T + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-37.8 + 12.2i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 119. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-19.1 + 58.9i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.01836953055285917098896695470, −11.08325357923664249195616952355, −10.42729246144037451770885858670, −9.003574925368196473862859265484, −7.31533870087411070103326742426, −6.86271009236182384876336830599, −5.91974530194646074453611848761, −4.69505653065804084253686907256, −3.91926548229564893177850368276, −3.28757368619713100554309439841,
0.12978555830889819402369735301, 2.25905054736044839771886315695, 3.59712447432829192917643363262, 4.59039632014148456193568343942, 5.56040597716937591904435336001, 6.42168966447172354250810313795, 7.42056077533680045767600959232, 8.667124345766719968716678176595, 10.17713802127620255465259115130, 11.38974797935965393632400542949