L(s) = 1 | + (−2.99 + 0.127i)3-s + (−3.23 − 2.35i)4-s + (9.46 − 3.07i)5-s + (8.96 − 0.766i)9-s + (10 + 6.63i)12-s + (−27.9 + 10.4i)15-s + (4.94 + 15.2i)16-s + (−37.8 − 12.2i)20-s − 29.8i·23-s + (59.8 − 43.4i)25-s + (−26.7 + 3.44i)27-s + (11.4 − 35.1i)31-s + (−30.8 − 18.6i)36-s + (−20.2 − 14.6i)37-s + (82.4 − 34.8i)45-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.0426i)3-s + (−0.809 − 0.587i)4-s + (1.89 − 0.614i)5-s + (0.996 − 0.0851i)9-s + (0.833 + 0.552i)12-s + (−1.86 + 0.695i)15-s + (0.309 + 0.951i)16-s + (−1.89 − 0.614i)20-s − 1.29i·23-s + (2.39 − 1.73i)25-s + (−0.991 + 0.127i)27-s + (0.368 − 1.13i)31-s + (−0.856 − 0.516i)36-s + (−0.546 − 0.397i)37-s + (1.83 − 0.773i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0206 + 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0206 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.920473 - 0.901662i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.920473 - 0.901662i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.99 - 0.127i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (3.23 + 2.35i)T^{2} \) |
| 5 | \( 1 + (-9.46 + 3.07i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (111. - 343. i)T^{2} \) |
| 23 | \( 1 + 29.8iT - 529T^{2} \) |
| 29 | \( 1 + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-11.4 + 35.1i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (20.2 + 14.6i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 1.84e3T^{2} \) |
| 47 | \( 1 + (46.7 + 64.3i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-75.7 - 24.5i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (29.2 - 40.2i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 35T + 4.48e3T^{2} \) |
| 71 | \( 1 + (47.3 - 15.3i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 149. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-29.3 + 90.3i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57500912116286141186686904683, −10.14026441911381953999793858805, −9.378072369057674714551476251751, −8.542539766849665301275043649962, −6.68910879623552099374890798759, −5.89703156485568924672050161457, −5.25083676705035413266976836548, −4.40325368742249465968971933908, −1.98663282712181030875322580249, −0.72967833183705970713979538950,
1.51474209413340332609270905183, 3.15682398245965353697259572245, 4.79713485758522555622101550779, 5.59228685583239676191217308905, 6.47549660821507802581284148223, 7.45644834543155895348333639684, 8.957697927215268409103345871995, 9.758755466308655328838001170886, 10.35345599054924049161016589445, 11.37531955961604794134966640667