Properties

Label 2-363-33.20-c2-0-37
Degree $2$
Conductor $363$
Sign $-0.964 + 0.263i$
Analytic cond. $9.89103$
Root an. cond. $3.14500$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.51 − 0.817i)2-s + (−0.853 − 2.87i)3-s + (2.42 + 1.76i)4-s + (−2.68 + 0.874i)5-s + (−0.203 + 7.93i)6-s + (6.05 + 4.39i)7-s + (1.55 + 2.14i)8-s + (−7.54 + 4.90i)9-s + 7.48·10-s + (3.00 − 8.48i)12-s + (6.93 − 21.3i)13-s + (−11.6 − 16.0i)14-s + (4.80 + 6.99i)15-s + (−5.87 − 18.0i)16-s + (20.1 − 6.54i)17-s + (22.9 − 6.18i)18-s + ⋯
L(s)  = 1  + (−1.25 − 0.408i)2-s + (−0.284 − 0.958i)3-s + (0.606 + 0.440i)4-s + (−0.537 + 0.174i)5-s + (−0.0339 + 1.32i)6-s + (0.864 + 0.628i)7-s + (0.194 + 0.267i)8-s + (−0.838 + 0.545i)9-s + 0.748·10-s + (0.250 − 0.707i)12-s + (0.533 − 1.64i)13-s + (−0.831 − 1.14i)14-s + (0.320 + 0.466i)15-s + (−0.366 − 1.12i)16-s + (1.18 − 0.384i)17-s + (1.27 − 0.343i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-0.964 + 0.263i$
Analytic conductor: \(9.89103\)
Root analytic conductor: \(3.14500\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{363} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1),\ -0.964 + 0.263i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0654033 - 0.487931i\)
\(L(\frac12)\) \(\approx\) \(0.0654033 - 0.487931i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.853 + 2.87i)T \)
11 \( 1 \)
good2 \( 1 + (2.51 + 0.817i)T + (3.23 + 2.35i)T^{2} \)
5 \( 1 + (2.68 - 0.874i)T + (20.2 - 14.6i)T^{2} \)
7 \( 1 + (-6.05 - 4.39i)T + (15.1 + 46.6i)T^{2} \)
13 \( 1 + (-6.93 + 21.3i)T + (-136. - 99.3i)T^{2} \)
17 \( 1 + (-20.1 + 6.54i)T + (233. - 169. i)T^{2} \)
19 \( 1 + (12.1 - 8.79i)T + (111. - 343. i)T^{2} \)
23 \( 1 + 31.1iT - 529T^{2} \)
29 \( 1 + (12.4 - 17.1i)T + (-259. - 799. i)T^{2} \)
31 \( 1 + (-9.27 + 28.5i)T + (-777. - 564. i)T^{2} \)
37 \( 1 + (-8.09 - 5.87i)T + (423. + 1.30e3i)T^{2} \)
41 \( 1 + (-24.8 - 34.2i)T + (-519. + 1.59e3i)T^{2} \)
43 \( 1 + 14.9T + 1.84e3T^{2} \)
47 \( 1 + (21.6 + 29.7i)T + (-682. + 2.10e3i)T^{2} \)
53 \( 1 + (40.3 + 13.1i)T + (2.27e3 + 1.65e3i)T^{2} \)
59 \( 1 + (-19.9 + 27.4i)T + (-1.07e3 - 3.31e3i)T^{2} \)
61 \( 1 + (30.0 + 92.5i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + 42T + 4.48e3T^{2} \)
71 \( 1 + (61.8 - 20.1i)T + (4.07e3 - 2.96e3i)T^{2} \)
73 \( 1 + (60.5 + 43.9i)T + (1.64e3 + 5.06e3i)T^{2} \)
79 \( 1 + (-6.93 + 21.3i)T + (-5.04e3 - 3.66e3i)T^{2} \)
83 \( 1 + (-20.1 + 6.54i)T + (5.57e3 - 4.04e3i)T^{2} \)
89 \( 1 + 62.2iT - 7.92e3T^{2} \)
97 \( 1 + (-22.8 + 70.3i)T + (-7.61e3 - 5.53e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.87689620738595724754150641234, −9.984222307086637617325359079489, −8.609293764226296063284373089797, −8.043297548224863880149339102820, −7.58484042577945551383938296773, −6.04832726167657458845533243890, −5.05978160260309022494506532981, −2.97651354868297911355397870636, −1.67113222159955971735150329464, −0.39854429509150676138059105610, 1.34318491620600469820572368007, 3.86122801616329295328270005761, 4.49243423118008732186479563793, 5.99907606441003427926203721912, 7.23179344376461910341611183964, 8.076955048428943092553974362868, 8.902575697450755629148933789751, 9.647608708839837683121556650468, 10.57665947866958735770260636300, 11.28334944074851385618190920038

Graph of the $Z$-function along the critical line