L(s) = 1 | + (−2.51 − 0.817i)2-s + (−0.853 − 2.87i)3-s + (2.42 + 1.76i)4-s + (−2.68 + 0.874i)5-s + (−0.203 + 7.93i)6-s + (6.05 + 4.39i)7-s + (1.55 + 2.14i)8-s + (−7.54 + 4.90i)9-s + 7.48·10-s + (3.00 − 8.48i)12-s + (6.93 − 21.3i)13-s + (−11.6 − 16.0i)14-s + (4.80 + 6.99i)15-s + (−5.87 − 18.0i)16-s + (20.1 − 6.54i)17-s + (22.9 − 6.18i)18-s + ⋯ |
L(s) = 1 | + (−1.25 − 0.408i)2-s + (−0.284 − 0.958i)3-s + (0.606 + 0.440i)4-s + (−0.537 + 0.174i)5-s + (−0.0339 + 1.32i)6-s + (0.864 + 0.628i)7-s + (0.194 + 0.267i)8-s + (−0.838 + 0.545i)9-s + 0.748·10-s + (0.250 − 0.707i)12-s + (0.533 − 1.64i)13-s + (−0.831 − 1.14i)14-s + (0.320 + 0.466i)15-s + (−0.366 − 1.12i)16-s + (1.18 − 0.384i)17-s + (1.27 − 0.343i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0654033 - 0.487931i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0654033 - 0.487931i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.853 + 2.87i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (2.51 + 0.817i)T + (3.23 + 2.35i)T^{2} \) |
| 5 | \( 1 + (2.68 - 0.874i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (-6.05 - 4.39i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-6.93 + 21.3i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (-20.1 + 6.54i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (12.1 - 8.79i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 + 31.1iT - 529T^{2} \) |
| 29 | \( 1 + (12.4 - 17.1i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-9.27 + 28.5i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (-8.09 - 5.87i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-24.8 - 34.2i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 14.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + (21.6 + 29.7i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (40.3 + 13.1i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-19.9 + 27.4i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (30.0 + 92.5i)T + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 42T + 4.48e3T^{2} \) |
| 71 | \( 1 + (61.8 - 20.1i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (60.5 + 43.9i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-6.93 + 21.3i)T + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-20.1 + 6.54i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 62.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-22.8 + 70.3i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87689620738595724754150641234, −9.984222307086637617325359079489, −8.609293764226296063284373089797, −8.043297548224863880149339102820, −7.58484042577945551383938296773, −6.04832726167657458845533243890, −5.05978160260309022494506532981, −2.97651354868297911355397870636, −1.67113222159955971735150329464, −0.39854429509150676138059105610,
1.34318491620600469820572368007, 3.86122801616329295328270005761, 4.49243423118008732186479563793, 5.99907606441003427926203721912, 7.23179344376461910341611183964, 8.076955048428943092553974362868, 8.902575697450755629148933789751, 9.647608708839837683121556650468, 10.57665947866958735770260636300, 11.28334944074851385618190920038