Properties

Label 2-363-33.20-c2-0-27
Degree $2$
Conductor $363$
Sign $0.999 - 0.0304i$
Analytic cond. $9.89103$
Root an. cond. $3.14500$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.90 − 0.619i)2-s + (−1.63 + 2.51i)3-s + (0.0135 + 0.00987i)4-s + (5.21 − 1.69i)5-s + (4.67 − 3.78i)6-s + (4.52 + 3.28i)7-s + (4.69 + 6.45i)8-s + (−3.66 − 8.22i)9-s − 10.9·10-s + (−0.0470 + 0.0180i)12-s + (3.00 − 9.24i)13-s + (−6.58 − 9.06i)14-s + (−4.25 + 15.8i)15-s + (−4.96 − 15.2i)16-s + (−16.9 + 5.52i)17-s + (1.88 + 17.9i)18-s + ⋯
L(s)  = 1  + (−0.953 − 0.309i)2-s + (−0.544 + 0.838i)3-s + (0.00339 + 0.00246i)4-s + (1.04 − 0.338i)5-s + (0.778 − 0.630i)6-s + (0.646 + 0.469i)7-s + (0.586 + 0.807i)8-s + (−0.406 − 0.913i)9-s − 1.09·10-s + (−0.00392 + 0.00150i)12-s + (0.230 − 0.710i)13-s + (−0.470 − 0.647i)14-s + (−0.283 + 1.05i)15-s + (−0.310 − 0.955i)16-s + (−0.999 + 0.324i)17-s + (0.104 + 0.996i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0304i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 - 0.0304i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $0.999 - 0.0304i$
Analytic conductor: \(9.89103\)
Root analytic conductor: \(3.14500\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{363} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1),\ 0.999 - 0.0304i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.982205 + 0.0149762i\)
\(L(\frac12)\) \(\approx\) \(0.982205 + 0.0149762i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.63 - 2.51i)T \)
11 \( 1 \)
good2 \( 1 + (1.90 + 0.619i)T + (3.23 + 2.35i)T^{2} \)
5 \( 1 + (-5.21 + 1.69i)T + (20.2 - 14.6i)T^{2} \)
7 \( 1 + (-4.52 - 3.28i)T + (15.1 + 46.6i)T^{2} \)
13 \( 1 + (-3.00 + 9.24i)T + (-136. - 99.3i)T^{2} \)
17 \( 1 + (16.9 - 5.52i)T + (233. - 169. i)T^{2} \)
19 \( 1 + (-15.0 + 10.9i)T + (111. - 343. i)T^{2} \)
23 \( 1 - 12.3iT - 529T^{2} \)
29 \( 1 + (-1.45 + 2.00i)T + (-259. - 799. i)T^{2} \)
31 \( 1 + (-15.2 + 46.8i)T + (-777. - 564. i)T^{2} \)
37 \( 1 + (-31.8 - 23.1i)T + (423. + 1.30e3i)T^{2} \)
41 \( 1 + (-33.2 - 45.7i)T + (-519. + 1.59e3i)T^{2} \)
43 \( 1 - 43.9T + 1.84e3T^{2} \)
47 \( 1 + (-33.9 - 46.7i)T + (-682. + 2.10e3i)T^{2} \)
53 \( 1 + (-41.0 - 13.3i)T + (2.27e3 + 1.65e3i)T^{2} \)
59 \( 1 + (-52.9 + 72.8i)T + (-1.07e3 - 3.31e3i)T^{2} \)
61 \( 1 + (-9.53 - 29.3i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 - 34.0T + 4.48e3T^{2} \)
71 \( 1 + (35.7 - 11.6i)T + (4.07e3 - 2.96e3i)T^{2} \)
73 \( 1 + (9.81 + 7.12i)T + (1.64e3 + 5.06e3i)T^{2} \)
79 \( 1 + (-19.5 + 60.0i)T + (-5.04e3 - 3.66e3i)T^{2} \)
83 \( 1 + (-9.22 + 2.99i)T + (5.57e3 - 4.04e3i)T^{2} \)
89 \( 1 - 34.1iT - 7.92e3T^{2} \)
97 \( 1 + (11.6 - 35.9i)T + (-7.61e3 - 5.53e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.12055579866259263330796933100, −10.07874791101229517155987710332, −9.488177389160875133501395865074, −8.852461394145944560281261133181, −7.84233240989814865793545273152, −6.07314911827836885641359861030, −5.36583051656213123129272993945, −4.44322988097124143311471351307, −2.44298193785771087230921645348, −0.945066903836358747274923995209, 0.981037062714141615566084749747, 2.19164304065141788144265792194, 4.34327821606802223237516608735, 5.66165271122500982643825732518, 6.75214545395280338046239889062, 7.32815585627535081573831594727, 8.399121811422722891442548094816, 9.238365080269735221767713821629, 10.32503863642941878089631352036, 10.93212863567108823254413941048

Graph of the $Z$-function along the critical line