L(s) = 1 | + (−1.04 + 2.81i)3-s + (−3.23 − 2.35i)4-s + (−9.46 + 3.07i)5-s + (−6.80 − 5.89i)9-s + (10 − 6.63i)12-s + (1.27 − 29.8i)15-s + (4.94 + 15.2i)16-s + (37.8 + 12.2i)20-s + 29.8i·23-s + (59.8 − 43.4i)25-s + (23.6 − 12.9i)27-s + (11.4 − 35.1i)31-s + (8.16 + 35.0i)36-s + (−20.2 − 14.6i)37-s + (82.4 + 34.8i)45-s + ⋯ |
L(s) = 1 | + (−0.349 + 0.937i)3-s + (−0.809 − 0.587i)4-s + (−1.89 + 0.614i)5-s + (−0.756 − 0.654i)9-s + (0.833 − 0.552i)12-s + (0.0848 − 1.98i)15-s + (0.309 + 0.951i)16-s + (1.89 + 0.614i)20-s + 1.29i·23-s + (2.39 − 1.73i)25-s + (0.877 − 0.479i)27-s + (0.368 − 1.13i)31-s + (0.226 + 0.973i)36-s + (−0.546 − 0.397i)37-s + (1.83 + 0.773i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.444779 - 0.0852581i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.444779 - 0.0852581i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.04 - 2.81i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (3.23 + 2.35i)T^{2} \) |
| 5 | \( 1 + (9.46 - 3.07i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (111. - 343. i)T^{2} \) |
| 23 | \( 1 - 29.8iT - 529T^{2} \) |
| 29 | \( 1 + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-11.4 + 35.1i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (20.2 + 14.6i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 1.84e3T^{2} \) |
| 47 | \( 1 + (-46.7 - 64.3i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (75.7 + 24.5i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-29.2 + 40.2i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 35T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-47.3 + 15.3i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 149. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-29.3 + 90.3i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16978943114141555921528295126, −10.34196580830189215747159868362, −9.405117649926992390543916531990, −8.437372448375046625891757364404, −7.52094914549926966787438883959, −6.19524312655588192638157023070, −4.95895552153213829248659229704, −4.10183051100646912883092893103, −3.34992038109763052053836456393, −0.35867406250259902248902031471,
0.77582668421686330427242968912, 3.12560631252409283237293311683, 4.30478680018051011428142730455, 5.12011538578732466170806701201, 6.80771826246713364942020320508, 7.66285642162017591474997266120, 8.355378981680211818390876303089, 8.899717636729964592211635528216, 10.63747979606140348064080396276, 11.62421701862259320540671407598