L(s) = 1 | + (−2.91 − 0.945i)2-s + (−1.86 − 2.35i)3-s + (4.34 + 3.15i)4-s + (−6.31 + 2.05i)5-s + (3.20 + 8.60i)6-s + (−2.47 − 1.80i)7-s + (−2.45 − 3.37i)8-s + (−2.05 + 8.76i)9-s + 20.3·10-s + (−0.678 − 16.0i)12-s + (−5.01 + 15.4i)13-s + (5.50 + 7.58i)14-s + (16.5 + 11.0i)15-s + (−2.68 − 8.25i)16-s + (−0.766 + 0.248i)17-s + (14.2 − 23.5i)18-s + ⋯ |
L(s) = 1 | + (−1.45 − 0.472i)2-s + (−0.621 − 0.783i)3-s + (1.08 + 0.788i)4-s + (−1.26 + 0.410i)5-s + (0.533 + 1.43i)6-s + (−0.353 − 0.257i)7-s + (−0.306 − 0.422i)8-s + (−0.227 + 0.973i)9-s + 2.03·10-s + (−0.0565 − 1.34i)12-s + (−0.386 + 1.18i)13-s + (0.393 + 0.541i)14-s + (1.10 + 0.734i)15-s + (−0.167 − 0.515i)16-s + (−0.0450 + 0.0146i)17-s + (0.791 − 1.30i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.141358 - 0.190492i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.141358 - 0.190492i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.86 + 2.35i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (2.91 + 0.945i)T + (3.23 + 2.35i)T^{2} \) |
| 5 | \( 1 + (6.31 - 2.05i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (2.47 + 1.80i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (5.01 - 15.4i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (0.766 - 0.248i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-16.7 + 12.1i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 - 27.3iT - 529T^{2} \) |
| 29 | \( 1 + (-2.22 + 3.06i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (6.42 - 19.7i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (31.1 + 22.6i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (7.86 + 10.8i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 43.4T + 1.84e3T^{2} \) |
| 47 | \( 1 + (11.6 + 16.0i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (16.8 + 5.46i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-25.5 + 35.2i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (3.29 + 10.1i)T + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 - 72.2T + 4.48e3T^{2} \) |
| 71 | \( 1 + (2.44 - 0.794i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (36.7 + 26.7i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-30.3 + 93.4i)T + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (30.3 - 9.85i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 18.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (19.5 - 60.2i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08965938365957286851750033990, −10.09208435851895357464768598768, −9.091252424327353827834635129789, −8.061208210912831117194042187212, −7.23933623614244302706727666181, −6.83894100788310750958164783796, −5.02631255312929856697680011580, −3.39018554338538434701286469353, −1.82784581193390095900187224554, −0.32670212836539773344081153887,
0.69796084898117227907664335517, 3.34808936904038608657254737007, 4.61541794357099156840574924629, 5.83861981224693910535067834420, 7.00359300822249542154290019926, 8.010748621106464782931098309604, 8.613175194769667503990150780875, 9.694697385307547395955578346610, 10.28226138470813272646742891615, 11.21508558499232023563126032308