L(s) = 1 | + (2.05 + 2.83i)2-s + (2.10 − 2.14i)3-s + (−2.55 + 7.85i)4-s + (4.64 − 6.39i)5-s + (10.3 + 1.54i)6-s + (0.560 − 1.72i)7-s + (−14.1 + 4.60i)8-s + (−0.174 − 8.99i)9-s + 27.6·10-s + (11.4 + 21.9i)12-s + (−0.0573 + 0.0416i)13-s + (6.04 − 1.96i)14-s + (−3.93 − 23.3i)15-s + (−15.4 − 11.2i)16-s + (2.15 − 2.96i)17-s + (25.1 − 19.0i)18-s + ⋯ |
L(s) = 1 | + (1.02 + 1.41i)2-s + (0.700 − 0.713i)3-s + (−0.637 + 1.96i)4-s + (0.928 − 1.27i)5-s + (1.73 + 0.257i)6-s + (0.0801 − 0.246i)7-s + (−1.77 + 0.575i)8-s + (−0.0194 − 0.999i)9-s + 2.76·10-s + (0.954 + 1.82i)12-s + (−0.00441 + 0.00320i)13-s + (0.431 − 0.140i)14-s + (−0.262 − 1.55i)15-s + (−0.967 − 0.703i)16-s + (0.126 − 0.174i)17-s + (1.39 − 1.05i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 - 0.646i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.762 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.71549 + 1.36383i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.71549 + 1.36383i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.10 + 2.14i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-2.05 - 2.83i)T + (-1.23 + 3.80i)T^{2} \) |
| 5 | \( 1 + (-4.64 + 6.39i)T + (-7.72 - 23.7i)T^{2} \) |
| 7 | \( 1 + (-0.560 + 1.72i)T + (-39.6 - 28.8i)T^{2} \) |
| 13 | \( 1 + (0.0573 - 0.0416i)T + (52.2 - 160. i)T^{2} \) |
| 17 | \( 1 + (-2.15 + 2.96i)T + (-89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (-8.13 - 25.0i)T + (-292. + 212. i)T^{2} \) |
| 23 | \( 1 + 6.84iT - 529T^{2} \) |
| 29 | \( 1 + (-28.7 - 9.33i)T + (680. + 494. i)T^{2} \) |
| 31 | \( 1 + (34.1 - 24.8i)T + (296. - 913. i)T^{2} \) |
| 37 | \( 1 + (-1.14 + 3.51i)T + (-1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (67.5 - 21.9i)T + (1.35e3 - 988. i)T^{2} \) |
| 43 | \( 1 + 13.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + (26.0 - 8.45i)T + (1.78e3 - 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-12.7 - 17.5i)T + (-868. + 2.67e3i)T^{2} \) |
| 59 | \( 1 + (-75.8 - 24.6i)T + (2.81e3 + 2.04e3i)T^{2} \) |
| 61 | \( 1 + (64.0 + 46.5i)T + (1.14e3 + 3.53e3i)T^{2} \) |
| 67 | \( 1 + 101.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-27.2 + 37.5i)T + (-1.55e3 - 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-35.6 + 109. i)T + (-4.31e3 - 3.13e3i)T^{2} \) |
| 79 | \( 1 + (50.8 - 36.9i)T + (1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (49.6 - 68.3i)T + (-2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 - 45.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-77.8 + 56.5i)T + (2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11998898128076128240672214469, −10.05647536061294759548757093166, −8.935558319028999816765638116776, −8.317661376648438666882227190477, −7.42324729471178614252381716639, −6.40995030595791619533883942464, −5.57343394073781826563671220257, −4.65488567131214737634989302217, −3.37646270448047828507770332281, −1.51289922648276216398881383753,
2.00213325113696690413773658965, 2.78871267853175424133299573641, 3.60930572023397813244285792485, 4.88638236031433891888811099529, 5.79710451506166628759621598954, 7.13449488199522376364154415913, 8.814158386522723280124046413381, 9.841497493168938819486946023083, 10.25458594220145346196337222060, 11.09419633375483543317199500655